泛函分析孙炯答案第二章
“泛函分析孙炯答案第二章”相关的资料有哪些?“泛函分析孙炯答案第二章”相关的范文有哪些?怎么写?下面是小编为您精心整理的“泛函分析孙炯答案第二章”相关范文大全或资料大全,欢迎大家分享。
泛函分析答案2.3
泛函分析 江泽坚 版,答案,有全部答案呢,可以向我索要哦!泛函好难,答案是必须有的!
X是Banach空间,X0
是X的闭子空间,映射 :X X/X0,定义为
其中[x]表 :x [x] x X,
示含x的商类. 求证 是开映射.
证法1 用开映射定理, 只需证明 满射. 事实上,
[x] X X0,任取x [x],则有x X, x=[x].
证法2 不用开映射定理. 教材p94, 定理 2.3.8 的证明中的 (1)为了证T是开映射,必须且仅须 >0, s.t.
TB( ,1) U( , ) . 取 =1.并设
B( ,1) X中的开单位球;
1
U ,1) X X0中的开单位球.
下面证明U( ,1)= B( ,1).
x B( ,1) x<1 [x] x<1 x=[x] U( ,1) B( ,1) U( ,1)反之,
[x] U( ,1) [x]<1 x [x],使得
x<1 x B( ,1),[x]= x. U( ,1) B( ,1)
2.3.2设X,Y是Banach空间. U L(X,Y),设方程
信号分析第二章答案
信号分析与处理的课后习题答案是高等教育出版社的教科书
第二章习题参考解答
2.1 求下列系统的阶跃响应和冲激响应。 (1) y(n)
1
y(n 1) x(n) 3
1
h(n 1) (n) 3
解 当激励为 (n)时,响应为h(n),即:h(n) 由于方程简单,可利用迭代法求解:h(0)
1
h( 1) (0) 13,
h(1)
111
h(0) (1) h(0) 333,
2
11 1 h(2) h(1) (2) h(1)
333 …,
1
由此可归纳出h(n)的表达式:h(n) ()n (n)
3
利用阶跃响应和冲激响应的关系,可以求得阶跃响应:
11 ()n 1
1311s(n) h(k) ()k [ ()n] (n)
1223k k 031 3
n
n
(2) y(n)
1
y(n 2) x(n) 4
解 (a)求冲激响应
11
h(n 2) (n),当n 0时,h(n) h(n 2) 0。 44
111
特征方程 2 0,解得特征根为 1 , 2 。所以:
42211
h(n) C1()n C2( )n …(2.1.2.1)
22
11
通过原方程迭代知,h(0) h( 2) (0) 1,h(1) h( 1) (1) 0,代入式
44
h(n) (2.1.2.
数值分析第二章答案
第二章 插值法
1.当x 1, 1,2时,f(x) 0, 3,4,求f(x)的二次插值多项式。 解:
x0 1,x1 1,x2 2,
f(x0) 0,f(x1) 3,f(x2) 4;l0(x) l1(x) l2(x)
(x x1)(x x2)1
(x 1)(x 2)
(x0 x1)(x0 x2)2(x x0)(x x2)1
(x 1)(x 2)
(x1 x0)(x1 x2)6
(x x0)(x x1)1
(x 1)(x 1)
(x2 x0)(x2 x1)3
则二次拉格朗日插值多项式为
L2(x) yklk(x)
k 0
2
3l0(x) 4l2(x)
(x 1)(x 2)
124
(x 1)(x 1) 3
5237x x 623
2.给出f(x) lnx的数值表
用线性插值及二次插值计算的近似值。
解:由表格知,
x0 0.4,x1 0.5,x2 0.6,x3 0.7,x4 0.8;f(x0) 0.916291,f(x1) 0.693147f(x2) 0.510826,f(x3) 0.356675f(x4) 0.223144
若采用线性插值法计算ln0.54即f(0.54), 则0.5 0.54 0.6
l1(x) l2(x)
x x2
10(x 0.6)
信号分析第二章答案
信号分析与处理的课后习题答案是高等教育出版社的教科书
第二章习题参考解答
2.1 求下列系统的阶跃响应和冲激响应。 (1) y(n)
1
y(n 1) x(n) 3
1
h(n 1) (n) 3
解 当激励为 (n)时,响应为h(n),即:h(n) 由于方程简单,可利用迭代法求解:h(0)
1
h( 1) (0) 13,
h(1)
111
h(0) (1) h(0) 333,
2
11 1 h(2) h(1) (2) h(1)
333 …,
1
由此可归纳出h(n)的表达式:h(n) ()n (n)
3
利用阶跃响应和冲激响应的关系,可以求得阶跃响应:
11 ()n 1
1311s(n) h(k) ()k [ ()n] (n)
1223k k 031 3
n
n
(2) y(n)
1
y(n 2) x(n) 4
解 (a)求冲激响应
11
h(n 2) (n),当n 0时,h(n) h(n 2) 0。 44
111
特征方程 2 0,解得特征根为 1 , 2 。所以:
42211
h(n) C1()n C2( )n …(2.1.2.1)
22
11
通过原方程迭代知,h(0) h( 2) (0) 1,h(1) h( 1) (1) 0,代入式
44
h(n) (2.1.2.
泛函分析习题答案2003
泛函分析习题答案
第二章 度量空间
作业题答案提示 1、
试问在R上,??x,y???x?y?2能定义度量吗?
答:不能,因为三角不等式不成立。如取则有??x,y??4,而??x,z??1,??z,x??1 2、
试证明:(1)??x,y??x?y;(2)??x,y??12
x?y1?x?y在R上都定
义了度量。
证:(1)仅证明三角不等式。注意到
11??x?y?x?z?z?y??x?z2?z?y2???2
故有x?y?x?z?z?y
121212 (2)仅证明三角不等式 易证函数??x?? 所
a?1?a?b??b?1?x在R?上是单调增加的, 1?x以
a?a?有
?b1?b??a?b????a?b?,
b从而有
a1ab 令?x,y,z?R,令a?z?x,b?y?z 即
2-1
y?x1?y?x?z?x1?z?x?y?z1?y?z
泛函分析习题答案
4.试证明在C?a,b?上,?(x,y)??ax(t)?y(t)dt(2.3.12)
1b定义了度量。
证:(1)?(x,y)?0?x(t)?y(t)?0(因为x,y是连续函数) ?(x,y)?0及?
泛函分析习题答案2003
泛函分析习题答案
第二章 度量空间
作业题答案提示 1、
试问在R上,??x,y???x?y?2能定义度量吗?
答:不能,因为三角不等式不成立。如取则有??x,y??4,而??x,z??1,??z,x??1 2、
试证明:(1)??x,y??x?y;(2)??x,y??12
x?y1?x?y在R上都定
义了度量。
证:(1)仅证明三角不等式。注意到
11??x?y?x?z?z?y??x?z2?z?y2???2
故有x?y?x?z?z?y
121212 (2)仅证明三角不等式 易证函数??x?? 所
a?1?a?b??b?1?x在R?上是单调增加的, 1?x以
a?a?有
?b1?b??a?b????a?b?,
b从而有
a1ab 令?x,y,z?R,令a?z?x,b?y?z 即
2-1
y?x1?y?x?z?x1?z?x?y?z1?y?z
泛函分析习题答案
4.试证明在C?a,b?上,?(x,y)??ax(t)?y(t)dt(2.3.12)
1b定义了度量。
证:(1)?(x,y)?0?x(t)?y(t)?0(因为x,y是连续函数) ?(x,y)?0及?
泛函分析习题
第七章 度量空间和赋范线性空间
复习题:
1.设(X,d)为一度量空间,令
U(x0,?)?{x|x?X,d(x,x0)??},S(x0,?)?{x|x?X,d(x,x0)??},
问U(x0,?)的闭包是否等于S(x0,?)?
2.设C?[a,b]是区间[a,b]上无限次可微函数的全体,定义
?d(f,g)??r?012rmaxa?t?b|f(r)(t)?g(r)(t)|(t)|1?|f(r)(t)?g(r).
证明C?[a,b]按d(f,g)成度量空间.
3.设B是度量空间X中闭集,证明必有一列开集O1,O2,?,On,?包含B,而且?Onn?1??B.
4.设d(x,y)为空间X上的距离,证明
?(x,y)?dd(x,y)1?d(x,y)
也是X上的距离.
5.证明点列{fn}按题2中距离收敛于f?C[a,b]的充要条件为fn?的
各阶导数在[a,b]上一致收敛于f的各阶导数.
6.设B?[a,b],证明度量空间C[a,b]中的集
{f|当t?B时, f(t)=0}
为C[a,b]中的闭集,而集
A?{f|当t?时B,|f(t)?|a}(
泛函分析复习
2012泛函分析复习资料 一、定义
1. Page1 线性空间 2. Page2 Hamel基
3. Page3 凸集,凸包coE 4. Page4 度量空间
5. Page10 范数,线性赋范空间 6. Page12 内积,内积空间 7. Page14 平行四边形公式
8. Page23 Cauchy列,完备空间,Banach空间,Hilbert空间 9. Page27 稠密,无处稠密,第一纲集,第二纲集 10. page30 线性算子,线性泛函,N(T) 11. Page31 压缩映射,不动点
12. Page34同构映射,Page35 等距同构
13. page37 紧集,相对紧集,ε网,完全有界集 二、课后习题
1解答:当p?0时,d(x,y)?x?y不满足正定性,R在d下不是度量空间, 当p?1时,d(x,y)?x?y满足正定性,对称性,不满足三角不等式,故R在d下不是度量空间,
当0?p?1时,d(x,y)?x?y满足正定性,对称性和三角不等式,故R在d下是度量空间,
若令x?y?d(x,y),仅当p?1时,?满足范数的正定性,正齐次性和三角不等式,故此时R在?下是赋范空间。
2证明:
泛函分析习题
第七章 度量空间和赋范线性空间
复习题:
1.设(X,d)为一度量空间,令
U(x0,?)?{x|x?X,d(x,x0)??},S(x0,?)?{x|x?X,d(x,x0)??},
问U(x0,?)的闭包是否等于S(x0,?)?
2.设C?[a,b]是区间[a,b]上无限次可微函数的全体,定义
?d(f,g)??r?012rmaxa?t?b|f(r)(t)?g(r)(t)|(t)|1?|f(r)(t)?g(r).
证明C?[a,b]按d(f,g)成度量空间.
3.设B是度量空间X中闭集,证明必有一列开集O1,O2,?,On,?包含B,而且?Onn?1??B.
4.设d(x,y)为空间X上的距离,证明
?(x,y)?dd(x,y)1?d(x,y)
也是X上的距离.
5.证明点列{fn}按题2中距离收敛于f?C[a,b]的充要条件为fn?的
各阶导数在[a,b]上一致收敛于f的各阶导数.
6.设B?[a,b],证明度量空间C[a,b]中的集
{f|当t?B时, f(t)=0}
为C[a,b]中的闭集,而集
A?{f|当t?时B,|f(t)?|a}(
泛函分析总结
泛函分析知识点小结及应用
§1 度量空间的进一步例子
设X是任一非空集合,若对于?x,y?且满足 1.非负性:dX,都有唯一确定的实数d?x,y?与之对应,
?x,y??0,d?x,y?=0?x?y;
?x,y??d?x,z?+d?y,z?, 则称(?,d)
2. 对称性:d(x,y)=d(y,x);
3.三角不等式:对?x,y,z??,都有d为度量空间,?中的元素称为点。
1x 欧氏空间nR 对R中任意两点2nn?2?d?x,y?=???xi?yi??.
1??i??表示闭区间?a,b?上实值(或复值)连续函数的全体.对C?a,b? C?a,b空间 C?a,b?中任意两点x,y,定义d?x,y?=maxx?t??y?t?. ?a?t?b??1p?pp???. l(1?p???)空间 记l=?x??xk?k?1??xk??1p?p??pk??. 设x??xk?k?1,y??yk?k?1?l,定义 d?x,y?=???xi?yi??i?1??例1 序列空间S
??x?y?(或复数列?????x?xy?y令S表示实数列)的全体,对,,令 kkkk1k?1k?1. d?x,y?=k1?x?ykkk?