cnn卷积神经网络python代码
“cnn卷积神经网络python代码”相关的资料有哪些?“cnn卷积神经网络python代码”相关的范文有哪些?怎么写?下面是小编为您精心整理的“cnn卷积神经网络python代码”相关范文大全或资料大全,欢迎大家分享。
卷积神经网络CNN代码解析
卷积神经网络CNN代码解析
deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是 Rasmus Berg Palm
代码下载:https://http://www.77cn.com.cn/rasmusbergpalm/DeepLearnToolbox
这里我们介绍deepLearnToolbox-master中的CNN部分。
DeepLearnToolbox-master中CNN内的 函数:
调用关系为:
该模型使用了mnist的数字mnist_uint8.mat作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。
网络结构为:
让我们来看看各个函数:
一、Test_example_CNN: .................................................................................................................................................
卷积神经网络CNN相关代码注释
cnnexamples.m
[plain] view plaincopy
1. clear all; close all; clc; 2. addpath('../data'); 3. addpath('../util'); 4. load mnist_uint8; 5.
6. train_x = double(reshape(train_x',28,28,60000))/255; 7. test_x = double(reshape(test_x',28,28,10000))/255; 8. train_y = double(train_y'); 9. test_y = double(test_y'); 10.
11. %% ex1
12. %will run 1 epoch in about 200 second and get around 11% error. 13. %With 100 epochs you'll get around 1.2% error 14.
15. cnn.layers = {
16. struct('type', 'i') %in
卷积神经网络CNN相关代码注释
cnnexamples.m
[plain] view plaincopy
1. clear all; close all; clc; 2. addpath('../data'); 3. addpath('../util'); 4. load mnist_uint8; 5.
6. train_x = double(reshape(train_x',28,28,60000))/255; 7. test_x = double(reshape(test_x',28,28,10000))/255; 8. train_y = double(train_y'); 9. test_y = double(test_y'); 10.
11. %% ex1
12. %will run 1 epoch in about 200 second and get around 11% error. 13. %With 100 epochs you'll get around 1.2% error 14.
15. cnn.layers = {
16. struct('type', 'i') %in
BP神经网络预测代码
x=[54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507
109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 1
matlab 通用神经网络代码
matlab 通用神经网络代码
学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下,
希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享
感应器神经网络、线性网络、BP神经网络、径向基函数网络
%通用感应器神经网络。
P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1 50];%输入向量 T=[1 1 0 0 1];%期望输出
plotpv(P,T);%描绘输入点图像
net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量 hold on
linehandle=plotpc(net.iw{1},net.b{1}); net.adaptparam.passes=3; for a=1:25%训练次数 [net,Y,E]=adapt(net,P,T);
linehandle=plotpc(net.iw{1},net.b{1},linehandle); drawnow; end
%通用newlin程序
%通用线性网络进行预测 time=0:0.025:5; T=sin(time*4*pi); Q=length(T
基于卷积神经网络的正则化方法
计算机研究与发展DOI:10.7544/issnl000
JournalofComputerResearchandDevelopment
1239.2014.20140266
1900,2014
51(9):1891
基于卷积神经网络的正则化方法
吕国豪
罗四维
黄雅平蒋欣兰
北京
100044)
(北京交通大学交通数据分析与挖掘北京市重点实验室(1vguohao@bjtu.edu.cn)
ANovelRegularization
Method
a
a
Based
on
ConvolutionNeuralNetwork
LnGuohao,LuoSiwei。HuangY耐
X.¨dam
诧g
,
(BeijingKey
Laboratory
ofTraffic
D以
嗜m,以≯|Ⅲn㈨盯d曙M
is
●Be
g
∞_宝
g
University,Beijing100044)
inverse
Abstract
Regularization
method
widely
usedin
solving
the
problem.An
accurate
regularizationmodel
playsthemost
importantpartinsolvingtheinverse
problem.Theenergy
constraints
多级卷积神经网络的胰腺自动分割 - 图文
基于多级深度卷积网络的胰腺自动分割
摘要:器官自动分割是医学图像分析的一个重要而具有挑战性的问题。胰腺是腹部具有非常高的解剖变异性的器官。 用之前肝肾脏或者心脏的分割方法很难达到很高的精确度。在本文中,我们提出了一个用多级卷积网络基于概率的自下而上的方法对腹部CT图像的胰腺进行自动分割。我们提出并评估几个深度卷积网络在分层上的变异,在图像块和区域上的粗到细的分类器例如超像素。首先我们通过(P-ConvNet)卷积网络和近邻融合方法呈现出一个局部图像块的密集标签。然后我们描述一个局部卷积网络(R1-ConvNets)即在不同规模的缩小的区域中的围绕每一个图像超像素采集一系列边界框。(我们的卷积网络学会为每个胰腺的超像素区域分配类概率)。最后,我们利用CT强度的连接空间和P-ConvNet密度概率图学习一个堆叠的R2-ConvNets。3D的高斯去噪和2D的条件随机场用来后处理的预测。我们用4倍交叉验证评价82个病人的CT图像。我们实现了戴斯相似系数在训练时83.6±6.3%在测试时71.8±10.7%。 1、引言
胰腺的分割是计算机辅助诊断系统(CADx)的前提提供了器官单元的量化分析,例如糖尿病患者。精确分割对于计算机辅助诊断发现胰腺癌也是
多级卷积神经网络的胰腺自动分割 - 图文
基于多级深度卷积网络的胰腺自动分割
摘要:器官自动分割是医学图像分析的一个重要而具有挑战性的问题。胰腺是腹部具有非常高的解剖变异性的器官。 用之前肝肾脏或者心脏的分割方法很难达到很高的精确度。在本文中,我们提出了一个用多级卷积网络基于概率的自下而上的方法对腹部CT图像的胰腺进行自动分割。我们提出并评估几个深度卷积网络在分层上的变异,在图像块和区域上的粗到细的分类器例如超像素。首先我们通过(P-ConvNet)卷积网络和近邻融合方法呈现出一个局部图像块的密集标签。然后我们描述一个局部卷积网络(R1-ConvNets)即在不同规模的缩小的区域中的围绕每一个图像超像素采集一系列边界框。(我们的卷积网络学会为每个胰腺的超像素区域分配类概率)。最后,我们利用CT强度的连接空间和P-ConvNet密度概率图学习一个堆叠的R2-ConvNets。3D的高斯去噪和2D的条件随机场用来后处理的预测。我们用4倍交叉验证评价82个病人的CT图像。我们实现了戴斯相似系数在训练时83.6±6.3%在测试时71.8±10.7%。 1、引言
胰腺的分割是计算机辅助诊断系统(CADx)的前提提供了器官单元的量化分析,例如糖尿病患者。精确分割对于计算机辅助诊断发现胰腺癌也是
基于卷积神经网络的深度学习算法与应用研究
1对深度学习的国内外研究现状值得一看;2讲了神经网络和卷积神经网络的基础知识;3深度学习在车标上的应用基于卷积神经网络的深度学习算法与应用研究摘要深度学习(DL,DeepLearning)是计算机科学机器学习(ML,MachineLearning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标一人工智能(AI,ArtificialIntelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。将深度学习与各种实际应用研究相结合也是一项很重要的工作。本文整理和总结了国内外关于深度学习的发展历程和最新的研究成果,对人工神经网络及经典的卷积神经网络所涉及到
基于卷积神经网络的人脸识别系统设计与实现
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。与传统的人脸识别的方法相比深度
万方数据
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。与传统的人脸识别的方法相比深度
万方数据
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。与传统的人脸识别的方法相比深度
万方数据
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。