2020考研数学一
“2020考研数学一”相关的资料有哪些?“2020考研数学一”相关的范文有哪些?怎么写?下面是小编为您精心整理的“2020考研数学一”相关范文大全或资料大全,欢迎大家分享。
考研数学笔记(数学一)
笔记
高等数学
高中公式
三角函数公式
和差角公式 和差化积公式
sin( ) sin cos cos sin sin sin 2sin cos
cos( ) cos cos sin sin 22tg( ) tg tg
sin sin 2cos sin
1tg tg
22
ctg( )
ctg ctg 1cos cos 2cos cos
ctg ctg 22cos cos -2sin
2sin
2积化和差公式 倍角公式
sin2 2sin cos
2tan
sin cos 11 tan2
2
[sin( ) sin( )]cos2 2cos2
1 1 2sin2
cos sin 12
[sin( ) sin( )] cos2 sin2
1 tan2 1 tan2 cos cos 12
[cos( ) cos( )]tg2 2tg 1 tg2 ctg2 ctg2
12ctg sin sin 12[cos( ) cos( )]
sin3 3sin 4sin3
cos
2012考研数学一考试大纲
考研教育网
正保集团|报考指南|考试大纲|招生简章|历年试题|考研调剂|考研复试|招生院校|专题|学习卡|
论坛|博客|邮箱
考研网校|考研政治|考研英语|考研数学|专业课程|会计硕士|法律硕士|建筑硕士|医学类硕士|
管理类硕士|公务员
您的位置:考研教育网>考研数学>考试大纲> 正文
2012年考研数学一考试大纲
2011-9-27 16:13 考研教育网 【大 中 小】【我要纠错】
◇ 编辑推荐
·2012各高校招生简章 ·考研院校录取数据对比· 2012年考研网络面授班热招中
·2012年考研专业硕士多个频道上线 ·2012考研复习指导:政治 英语 数学 专业课
相关热词: 考试大纲 考研数学
转发分享:
| 更多
上一篇:线性代数特点及备考攻略
下一篇:2012年考研数学之有效利用历年真题
相关新闻
线性代数特点及备考攻略
2012年考研数学之有效利用历年真题 2012考研数学辅导之解题能力增速技巧 2012年考研数学之解题的具体方法与技巧 2012年考研数学在基础上运用解题技巧 2012年考研数学基础是学习中的重中之重 2012考研数学概率章节内容考试分析 从历年考研数学真题中
考研数学一历年真题1995
1995年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
2(1)lim(1 3xsinx
x 0
)
=_____________.
(2)d0dx
x2xcost2
dt= _____________. (3)设(a b) c 2,则[(a b) (b c)]
(c a)=_____________.
(4)幂级数 n2n 1n ( 3)
n
x的收敛半径R=_____________. n 12 1 00
3
(5)设三阶方阵A,B满足关系式A 1
BA 6A BA,且A 0
1
40 ,则B=_____________.
00
1 7
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设有直线L
: x 3y 2z 1 0
2x y 10z 3 0
,及平面 :4x 2y z 2 0,则直线L
(A)平行于 (B)在 上 (C)垂直于
(D)与 斜交
(2)设在[0,1]上f (x) 0,则f (0),f (1),f(1) f(0)或f(0) f(1)的大小顺序是
2002年考研数学一真题
2002年全国硕士研究生入学统一考试
数学一试题
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)
e
dx
=xln2x
.
.
.
(2)已知函数y
y(x)由方程ey 6xy x2 1 0确定,则y (0)=
(3)微分方程yy (4)已知实二次型
y 2 0满足初始条件y
x 0
1,y'
x 0
1
的特解是 2
22
f(x1,x2,x3) a(x12 x2 x3) 4x1x2 4x1x3 4x2x3经正交变换
x Py可化成标准型f 6y12,则a=2
(5)设随机变量X服从正态分布N( , 率为
)( 0),且二次方程y2 4y X 0无实根的概
1
,则 =2
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)
(1)考虑二元函数f(x,y)的下面4条性质: ①f(x,y)在点(x0,y0)处连续; ③f(x,y)在点(x0,y0)处可微;
②f(x,y)在点(x0,y0)处的两个偏导数连续; ④f(x,y)在点(x0,y0)处的两个偏导数存在.
若用“P Q”表示可由性质P推出性质Q,则有
(A) ② ③ ①. (C) ③ ④ ①.
n11
(2)
考研数学一历年真题1995
1995年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
2(1)lim(1 3xsinx
x 0
)
=_____________.
(2)d0dx
x2xcost2
dt= _____________. (3)设(a b) c 2,则[(a b) (b c)]
(c a)=_____________.
(4)幂级数 n2n 1n ( 3)
n
x的收敛半径R=_____________. n 12 1 00
3
(5)设三阶方阵A,B满足关系式A 1
BA 6A BA,且A 0
1
40 ,则B=_____________.
00
1 7
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设有直线L
: x 3y 2z 1 0
2x y 10z 3 0
,及平面 :4x 2y z 2 0,则直线L
(A)平行于 (B)在 上 (C)垂直于
(D)与 斜交
(2)设在[0,1]上f (x) 0,则f (0),f (1),f(1) f(0)或f(0) f(1)的大小顺序是
1987-2010年考研数学一
1987年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x=_____________时,函数y?x?2x取得极小值.
(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.
x?1
(3)与两直线 y??1?t及x?11?y?21?z?11都平行且过原点的平面方程为_____________.
z?2?t
(4)设L为取正向的圆周x2?y2?9,则曲线积分
??L(2xy?2y)dx?(x2?4x)dy= _____________. (5)已知三维向量空间的基底为α1?(1,1,0),α2?(1,0,1),α3?(0,1,1),则向量β?(2,0,0)在此基底下的坐标是_____________.
二、(本题满分8分)
求正的常数a与b,使等式lim1xt2x?0bx?sinx?0a?t2dt?1成立.
三、(本题满分7分)
(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求
?u?x,?v?x. ?(2)设矩阵A和B满足关系式AB=A?2B,其中A??301??110?,求矩阵B. ?0
2020考研数学一真题完整版(高质量无水印版)
2020考研数学一真题完整版(高质量无水印
版)
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
2 2020考研数学一真题(完整版)
一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上. 1.0x +→时,下列无穷小量中最高阶是( )
A.()
201x t e dt -?
B.0ln(1)x ?
C.sin 20sin x
t dt ?
D.1cos 0-?
2.设函数()f x 在区间(-1,1)内有定义,且0
lim ()0,x f x →=则( ) A.
当00,()0x f x x →==在处可导. B.
当00,()0x f x x →==在处可导.
C.
当0()00.x f x x →==在处可导时, D.
当0()00.x f x x →==在处可导时,
3.设函数()f x 在点(0,0)处可微,(0,0)
(0,0)0,,,1f f f n x y ????==- ?????非零向量d 与n 重直,则( )
A.(,)lim 0x y →=存在
3
B.(,)lim 0x y →=存在
C.(,)lim 0x y →=存在
D.(,
1994考研数学一真题及答案详解
1994考研数学一真题及答案详解
1994年全国硕士研究生入学统一考试数学一试题
一、填空题(本题共5个小题,每小题3分,满分15分.) (1) limcotx(
x 0
11
) sinxx
(2) 曲面z ez 2xy 3在点(1,2,0)处的切平面方程为1x 2u
(3) 设u esin,则在点(2,)处的值为_____________.
y x y
x
x2y2
(4) 设区域D为x y R,则 (2 2)dxdy _____________.
abD
2
2
2
nTT
(5) 已知 (1,2,3), (1,,),设A ,其中 是 的转置,则A 1123
二、选择题(本题共5个小题,每小题3分,满分15分.)
sinx4342
(1) 设M cosxdx,N (sinx cosx)dx,P 2 (x2sin3x cos4x)dx, 2 1 x222
2
则 ( )
(A) N P M (B) M P N (C) N M P
2014年考研数学一真题与解析
2014年考研数学一真题与解析
一、选择题
1—8小题.每小题4分,共32分.
1.下列曲线有渐近线的是
(A)y x sinx
(B)y x sinx
2
2
(C)y x sin
1x
(D)y x sin
1x
【分析】只需要判断哪个曲线有斜渐近线就可以.【详解】对于y x sin应该选(C)
2.设函数f(x)具有二阶导数,g(x) f(0)(1 x) f(1)x,则在[0,1]上(
(A)当f'(x) 0时,f(x) g(x)(C)当f (x) 0时,f(x) g(x)
)
1y1
,可知lim 1且lim(y x) limsin 0,所以有斜渐近线y x
x xx x xx
(B)当f'(x) 0时,f(x) g(x)(D)当f (x) 0时,f(x) g(x)
【分析】此题考查的曲线的凹凸性的定义及判断方法.
【详解1】如果对曲线在区间[a,b]上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点x1,x2及常数0 1,恒有f (1 )x1 x2 (1 )f(x1) f(x2),则曲线是凸的.显然此题中x1 0,x2 1, x,则(1 )f(x1) f(x2) f(0)(1 x) f(1)x g(x),而
f (1 )x1 x
2010年考研数学一真题及答案
2010年考研数学一真题
一、选择题(1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。)
(1)极限lim
x→∞[x2
(x?a)(x+b)
]x=
(A)1 (B)e (C)e a?b(D)e b?a 【考点】C。
【解析】
【方法一】
这是一个“1∞”型极限
lim x→∞[x2
(x?a)(x+b)
]x=lim
x→∞
{[1+(a?b)x+ab
(x?a)(x+b)
]
(x?a)(x+b)
(a?b)x+ab}
(a?b)x+ab
(x?a)(x+b)
x=e a?b
【方法二】
原式=lim
x→∞e xln
x2
(x?a)(x+b)
而lim
x→∞ xln x2
(x?a)(x+b)
=lim
x→∞
xln(1+(a?b)x+ab
(x?a)(x+b)
)
=lim
x→∞
x?(a?b)x+ab
(x?a)(x+b)
(等价无穷小代换) =a?b
则lim
x→∞[x2
(x?a)(x+b)
]x=e a?b
【方法三】
对于“1∞”型极限可利用基本结论:
若limα(x)=0, limβ(x)=0,且limα(x)β(x)=A 则li m(1+α(x))β(x)=e A,求极限
由于lim
x→∞α(x)β(x)=lim
x→∞
x2?(x?a)(x+b)
(x?a)(x+