高中数学常用不等式结论

“高中数学常用不等式结论”相关的资料有哪些?“高中数学常用不等式结论”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学常用不等式结论”相关范文大全或资料大全,欢迎大家分享。

高中数学复习系列 - 柯西不等式

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学复习系列---不等式(柯西不等式)

【柯西不等式的主要内容】 1. 柯西主要贡献简介:

柯西(Cauchy),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等. 2.二维形式的柯西不等式: 若a,b,c,d?R,则 当且仅当 时, 等号成立. 变式1.若a,b,c,d?R,则a2?b2?c2?d20

|ac?bd|或a2?b2?c2?d2ac?bd;

0

变式2.若a,b,c,d?R,则a2?b2?c2?d2(a?c)2?(b?d)2 ;

变式3.(三角形不等式)设x1,y1,x2,y2,x3,y3为任意实数,则: (x1?x2)2?(y1?y2)2?(x2?x3)2?(y2?y3)2?3. 一般形式的柯西不等式:设n为大于1的自然数,

0

ai,bi?R(i?1,2,…,n),

则: .当且

高中数学必修5高中数学必修5《3.1不等关系与不等式(一)》教案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

广东省一级学校-陆丰市林启恩纪念中学亲情奉献,高中数学资料

第一课时 3.1 不等关系与不等式(一)

一、教学目标

1.使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)

产生的实际背景的前提下,能列出不等式与不等式组.

2. 学习如何利用不等式表示不等关系,利用不等式的有关基本性质研究不等关系;

3.通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,

通过学生对问题的探究思考,广泛参与,改变学生的学习方式,提高学习质量。

二、教学重、难点

重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理

解不等式(组)对于刻画不等关系的意义和价值。

难点:正确理解现实生活中存在的不等关系. 用不等式(组)正确表示出不等关系。 三、教学过程

(一)[创设问题情境]

问题1:设点A与平面 的距离为d,B为平面 上的任意一点,则d≤AB。

问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。根据市场调查,若单价每提高0.1

元,销售量就可能相应减少2000本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元? 分析:若杂志的定价为x元,则销售的总

高中数学不等式综合测试题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高二数学

不等关系;一元二次不等式的解法同步练习

(答题时间:60分钟)

一、选择题

1、若a,b是实数,且a>b,则下列结论成立的是( )

b11

A. a2 b2 B. 1 C. lg(a b) 0 D. ()a ()b

a22

*2、若a<0,-1<b<0,则( )

A. a ab ab2 B. ab2 ab a C. ab b ab2 D. ab ab2 a *3、设a>b>1,P

lgalgb,Q

1a b(lga lgb),R lg(),则( ) 22

A. R<P<Q B. P<Q<R C. Q<P<R D. P<R<Q

2

2) (4, )*4、若ax2 bx c 0的解集是( ,,则对于函数f(x) ax bx c 应有( )

A. f(5) f(2) f( 1) C. f( 1) f(2) f(5)

B. f(2) f(5) f( 1) D. f(2) f( 1) f(5)

**5、函数f(x)

x 4

的定义域是( , ),则实数a的取值范围是( ) 2

ax 4ax

高中数学常用结论集锦

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第 1 页 共 10 页 1.德摩根公式 ();()U U U U U U C A

B C A C B C A B C A C B ==.

2U U A B A A B B A B C B C A =?=????U A C B ?=ΦU C A B R ?=

3. 若A={123,,n a a a a },则A的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个

4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;

③零点式12()()()(0)f x a x x x x a =--≠.

三次函数的解析式的三种形式①一般式32

()(0)f x ax bx cx d a =+++≠

②零点式123()()()()(0)f x a x x x x x x a =---≠

5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?

[]1212()()0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --

()()0

高中数学常用公式及常用结论

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

§01. 集合与简易逻辑

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?

高中数学常用公式及结论

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学

常用公式及结论 王新敞

高中数学常用公式及结论

1. 元素与集合的关系:x?A?x?CUA,x?CUA?x?A.??A?A?? 2.德摩根公式 :CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB. 3.包含关系:

A?B?A?B?A?A?B?B?CUB?CUA?A?CUB???CUA?B?R

4.元素个数关系:

card(A?B)?cardA?cardB?card(A?B) card(A?B?C)?cardA?cardB?cardC

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2?1个;非空子集有2?1个;非空的真子集有2?2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0);

(2)顶点式f(x)?a(x?h)2?k(a?0);(当已知抛物线的顶点坐标(h,k)时,设为此式) (3)零点式f(x)?a(x?x1)(x?x2)(a?0);(当已知抛物线与x轴的交点坐标为

nnnn(x1,0),(x2,0)时,

高中数学常用公式及常用结论2

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系:只能用属于符号而集合之间的关系用包含符号

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

注意:若A?B,则A可能是空集 练习:

1、设集合A?{x|x?12?x?0},B?{x|x?a},若A?B??,则a的取值范围( C )

(A)a?2 (B)a??2 (C)a??1 (D) -1

2、已知不等式x2?ax?0的解集为集合A=?x0?x?1?,(1)则a?________(a?1) (2)设集合B=?yy?x?a?且A?B?B,则a的取值范围是 a?0

23、设集合A?{1,2},则满足A?B?A的集合B的个数是B

(A)1 (B)3 (C)4 (D)8

4.若集合A有n个元素,则它的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.

【点评】本题考查了并集运算以及集合的子集个数问题,同时考查了等价转化思想。

4、已知

高中数学 - 常用公式及常用结论大全

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

新课标:(高中数学)

新课标:高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

N?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)1

高中数学常用公式及常用结论2

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系:只能用属于符号而集合之间的关系用包含符号

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

注意:若A?B,则A可能是空集 练习:

1、设集合A?{x|x?12?x?0},B?{x|x?a},若A?B??,则a的取值范围( C )

(A)a?2 (B)a??2 (C)a??1 (D) -1

2、已知不等式x2?ax?0的解集为集合A=?x0?x?1?,(1)则a?________(a?1) (2)设集合B=?yy?x?a?且A?B?B,则a的取值范围是 a?0

23、设集合A?{1,2},则满足A?B?A的集合B的个数是B

(A)1 (B)3 (C)4 (D)8

4.若集合A有n个元素,则它的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.

【点评】本题考查了并集运算以及集合的子集个数问题,同时考查了等价转化思想。

4、已知

高中数学压轴题系列——导数专题——超越不等式放缩

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学压轴题系列——导数专题——超越不等式放缩

1.(2010?大纲版Ⅰ)已知函数f(x)=(x+1)lnx﹣x+1.

(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;(Ⅱ)证明:(x﹣1)f(x)≥0. 解:(Ⅰ)

,xf′(x)=xlnx+1,

题设xf′(x)≤x2+ax+1等价于lnx﹣x≤a.令g(x)=lnx﹣x,则

当0<x<1,g′(x)>0;当x≥1时,g′(x)≤0,x=1是g(x)的最大值点,g(x)≤g(1)=﹣1 综上,a的取值范围是[﹣1,+∞).

(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=﹣1即lnx﹣x+1≤0. 当0<x<1时,f(x)=(x+1)lnx﹣x+1=xlnx+(lnx﹣x+1)<0; 当x≥1时,f(x)=lnx+(xlnx﹣x+1)= 所以(x﹣1)f(x)≥0.

2.(2010?大纲版Ⅱ)设函数f(x)=1﹣e﹣x. (Ⅰ)证明:当x>﹣1时,f(x)≥解:(1)当x>﹣1时,f(x)≥

;(Ⅱ)设当x≥0时,f(x)≤

,求a的取值范围.

=

≥0

当且仅当ex≥1+x 令g(x)=ex﹣x﹣1,则g'(x)=ex﹣1

当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数 当x≤0时g