积分方程如何求解
“积分方程如何求解”相关的资料有哪些?“积分方程如何求解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“积分方程如何求解”相关范文大全或资料大全,欢迎大家分享。
关于积分方程的求解问题
是好的写作材料
科
年第
期
国土资源高等职业教育研究
关于积分方程的求解问题王东霞
李富强
平顶山工学院
含有变上下限积分的方程称为积分方程,,,
。
甲
一
甲、
,
这类方程的求解间题是一种常见的题型也是考研的常考内容但在大多数《教材中没有进高等数学》
即,…二
小丁气,,
、
气‘,
,
,
甲
,
‘,
,
,
行深人地讨论决。,
。
学生遇到此类问题时感到难以解,,
甲
是方程
的连续解证毕,,
。
为此本文针对这类方程的求解问题进行讨论。,,
命题
设
连续
可导函数
是含
供大家参考
参变量的积分方程
由于积分与微分是两种互逆运算因此我们可以考虑把积分方程转化为微分方程进行求解其理,
丸的解的充要条件是二‘
一,
是微分方程勺二
论依据由以下命题给出
。
一
命题二
设
,
连续,
,
可导函数,
二
甲
满足初始条件证明必要性,
劫
勺
的解
。
是积分方程
若
是方程一‘
的解则,
气’,
,
‘二
丁瓦,
‘。
对一
耘二
一
‘
作
的连续解的充分必要条件是
杯是微分方程
变量代换令
一
,
则一
五一
礼勒二
一
‘
、
二、
一
满足初始条件杯勒证明必要性
的解
。
那么的连续…
,
二
石、…,
一
若
州
是方程
解则,
连续
,
石丁、可导。
一
可导二,
,‘
了气,
,
,
,‘
又
可导故
对,,
式两边求导得二
一
翔
,
’
连续可导故甲,,
‘
气。
,
可导
。
又。
翔
翔
又
可导 ,
是方程解,
满足初始条件《扔是方程一
甸
的拓
对
式两边求
关于积分方程的求解问题
是好的写作材料
科
年第
期
国土资源高等职业教育研究
关于积分方程的求解问题王东霞
李富强
平顶山工学院
含有变上下限积分的方程称为积分方程,,,
。
甲
一
甲、
,
这类方程的求解间题是一种常见的题型也是考研的常考内容但在大多数《教材中没有进高等数学》
即,…二
小丁气,,
、
气‘,
,
,
甲
,
‘,
,
,
行深人地讨论决。,
。
学生遇到此类问题时感到难以解,,
甲
是方程
的连续解证毕,,
。
为此本文针对这类方程的求解问题进行讨论。,,
命题
设
连续
可导函数
是含
供大家参考
参变量的积分方程
由于积分与微分是两种互逆运算因此我们可以考虑把积分方程转化为微分方程进行求解其理,
丸的解的充要条件是二‘
一,
是微分方程勺二
论依据由以下命题给出
。
一
命题二
设
,
连续,
,
可导函数,
二
甲
满足初始条件证明必要性,
劫
勺
的解
。
是积分方程
若
是方程一‘
的解则,
气’,
,
‘二
丁瓦,
‘。
对一
耘二
一
‘
作
的连续解的充分必要条件是
杯是微分方程
变量代换令
一
,
则一
五一
礼勒二
一
‘
、
二、
一
满足初始条件杯勒证明必要性
的解
。
那么的连续…
,
二
石、…,
一
若
州
是方程
解则,
连续
,
石丁、可导。
一
可导二,
,‘
了气,
,
,
,‘
又
可导故
对,,
式两边求导得二
一
翔
,
’
连续可导故甲,,
‘
气。
,
可导
。
又。
翔
翔
又
可导 ,
是方程解,
满足初始条件《扔是方程一
甸
的拓
对
式两边求
欧拉积分在求解定积分中的应用
2009年9月第23卷第3期
阴山学刊
YINSHANACADEMICJOURNAL
Sep.2009V01.23
No.3
欧拉积分在求解定积分中的应用
田
兵
(包头师范学院学报编辑部,内蒙古包头014030)
摘要:本文叙述了欧拉积分的定义及相关性质,着重通过举例说明欧拉积分在实际计算中的应用。关键词:欧拉积分;定义;性质;应用
中图分类号:0172.2文献标识码:A文章编号:1004—1869(2009)03-0022—03
求解定积分是学习高等数学的一个重要内容,也是解决数学问题的一个基本技能。求解定积分的
∞)内闭一致收敛。F(d)在区间(0,+∞)连续,求导在积分号下进行:
方法一般来说是先求出原函数,然后再根据牛顿一一莱布尼茨公式带人上下限进行计算。这种方法对
于一般的定积分求解问题比较实用。
r“’(a)=f石”1e1(1似)“dx
(2)递推公式Vd>0,有
r(a+1)=ar(a)。
这个性质可有分布积分公式得到。
,+∞
,+蕾
在实际问题中,有许多定积分的原函数,难以计算或者计算过程非常繁杂。而如果将其进行适量的变量代换,变为我们熟悉的定积分,那么这一问题就
得到了很好的解决。欧拉积分恰恰就是我们解决这
r(a+1)=I
Xae-x
帕
石。e—dx=I加
x。d(一
欧拉积分在求解定积分中的应用
2009年9月第23卷第3期
阴山学刊
YINSHANACADEMICJOURNAL
Sep.2009V01.23
No.3
欧拉积分在求解定积分中的应用
田
兵
(包头师范学院学报编辑部,内蒙古包头014030)
摘要:本文叙述了欧拉积分的定义及相关性质,着重通过举例说明欧拉积分在实际计算中的应用。关键词:欧拉积分;定义;性质;应用
中图分类号:0172.2文献标识码:A文章编号:1004—1869(2009)03-0022—03
求解定积分是学习高等数学的一个重要内容,也是解决数学问题的一个基本技能。求解定积分的
∞)内闭一致收敛。F(d)在区间(0,+∞)连续,求导在积分号下进行:
方法一般来说是先求出原函数,然后再根据牛顿一一莱布尼茨公式带人上下限进行计算。这种方法对
于一般的定积分求解问题比较实用。
r“’(a)=f石”1e1(1似)“dx
(2)递推公式Vd>0,有
r(a+1)=ar(a)。
这个性质可有分布积分公式得到。
,+∞
,+蕾
在实际问题中,有许多定积分的原函数,难以计算或者计算过程非常繁杂。而如果将其进行适量的变量代换,变为我们熟悉的定积分,那么这一问题就
得到了很好的解决。欧拉积分恰恰就是我们解决这
r(a+1)=I
Xae-x
帕
石。e—dx=I加
x。d(一
矩阵方程的求解问题
矩阵的知识
维普资讯
第 l 9卷第 2期
邯郸职业技术学院学报
2O 06年 6月
矩阵方程的求解问题郑丽0 60 ) 50 1 (邯郸职业技术学院基础部,河北邯郸
摘
要:主要考察了矩阵方程的求解问题,出了一般矩阵方程当系数矩阵满足不同条件时的两种给
求解方法。
关键词:阵;阵的逆;阵方程矩矩矩中图分类号: 2 16 0 4 .文献标识码: A文章编号:0 9 4 2 2 o ) 2 0 9 3 10—5 6 (0 6 0—0 8—0—。..。.. ... ...L。. ..。.
矩阵是线性代数中的最重要的部分。贯穿于线性代数的始终,以说线性代数就是矩阵的代数,它可 矩阵是处理高等数学很多问题的有力工具。阵方程是矩阵运算的一部分,矩这里我们主要讨论如何求解矩阵方程的问题。握简单的矩阵方程的求法,于求解复杂的矩阵方程有很大帮助。掌对 简单的矩阵方程有三种基本形式:= C,A= C,X= C。 X AB如果这里的 A、是可逆方阵,都则求解时需要找出矩阵的逆,注意左乘和右乘的区别。它们的解分别为:: A-C,= 1 ~,: A 1 -~。 例如,方程 A= C,求解 C先考察 A是否可逆。如果 A可逆时,程两边同时左乘 A得 A A=方~, A—
关于求解三重积分的方法
根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。
科技信息
高校理科研究
关孑求船三重积分帕方法襄樊学院数计学院陶爽卢方芳[摘要]根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。 [关键词】积分区域最大投影柱坐标球面坐标 1出的曲形如 z f x )=, .给面=1,, x ) ( yz Y令£ )如 y, y= )得到一个关于 xy,的方程,是封闭曲面围成的区域在 X Y平面上的最大投影,也是 x满足的范围,然后根据所得到的 xy O, y, 的关系判断 f 2 l的大小。, f 例 1化三重积分 f,z xy z ( Y ) dd为三次积分, x,d积分区域 Q是由曲面 z x 22 z2 X围成的闭区域。= Z y及=一2+ 解根据 x 2 2 x有 x 1因为得到的是最大投影,以 xy 2 y一 y,+所,满足的是 x y≤1 22,+根据该式可知≤2 X则一2,,
故闭区域在平面上的最大投影区域 D (, I+2】据 y得=(y x y≤1根 x)z, 2≤1出、 =[≥z z 2≥x y而根据所给的曲面方程形式,+,可以使用柱坐标变换,
令{p S 0 p+ f C≤<∞ X O= f ≥≥ 22~== z xy
用matlab求解差分方程
差分方程 matlab
Matlab求解差分方程问题 用Matlab求解差分方程问题
一阶线性常系数差分方程
高阶线性常系数差分方程
线性常系数差分方程组
差分方程 matlab
差分方程是在离散时段上描述现 实世界中变化过程的数学模型
例1、 某种货币1年期存款的年利率是r , 现存入M元,问年后的本金与利息之和 是多少? Xk+1=(1+r)xk , k = 0 , 1 , 2
以k=0时x0=M代入,递推n次可得n年后本息为
xn = (1 + r ) M
n
差分方程 matlab
污水处理厂每天可将处理池的污水浓度 降低一个固定比例q,问多长时间才能将 污水浓度降低一半? 记第k天的污水浓度为ck,则第k+1天的污 水浓度为 ck+1=(1-q)ck,k=0,1,2, 从k=0开始递推n次得
cn = (1 q) c0
n
以cn=c0/2代入即求解。
差分方程 matlab
一阶线性常系数差分方程
濒危物种的自然演变和人工孵化 问题 Florida沙丘鹤属于濒危物种,它在较好
自然环境下,年均增长率仅为1.94%,而在中 等和较差环境下年均增长率分别为 -3.24% 和 -3.82%,如果在某自然保护区内开始有100只 鹤,建立描述其数量变化规律的模
2017年考研数学复习之积分求解
凯程考研,中国最权威的考研辅导班
2017年考研数学复习之积分求解
积分在很多学科中都有重要应用,理所当然成为大学高等数学中的重要内容,在数学中同样如此,刚过去的考研数学一真题中,就有4道考察积分的题目,分值加起来占总分比例不小,应引起考生注意。
高等数学中的积分大体分为三大类。第一类:不定积分、定积分、反常积分;第二类:二重积分、三重积分;第三类:曲线积分(第一型、第二型)、曲面积分(第一型、第二型)。这三类层层递进,后面的以前面的为基础。
首先,记忆一些积分公式是非常必要的,可以明显提高解题效率和解题正确率。记忆不是死记硬背,而是结合做题,边做边记,这样记得快而且牢。不光公式,还有相关的概念、定理也是需要熟练记忆的,而这就不只是记住结论就行的,每个定理的结论都是有其成立的前提条件的,前提条件不满足,结论就不能乱用。最典型的是格林公式的应用,要求积分区域为平面(单或多)连通区域,如果不是,则不能直接应用结论。
其次,多做题,总结做题技巧,做到融会贯通。翻一下历年真题,会发现考查积分题目的计算量都不大,多是对解题技巧的考查,如在对称区间上求奇或偶函数的积分;利用积分中值定理;转化坐标系(直角坐标系与极坐标系间的转化)
关于求解三重积分的方法
根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。
科技信息
高校理科研究
关孑求船三重积分帕方法襄樊学院数计学院陶爽卢方芳[摘要]根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。 [关键词】积分区域最大投影柱坐标球面坐标 1出的曲形如 z f x )=, .给面=1,, x ) ( yz Y令£ )如 y, y= )得到一个关于 xy,的方程,是封闭曲面围成的区域在 X Y平面上的最大投影,也是 x满足的范围,然后根据所得到的 xy O, y, 的关系判断 f 2 l的大小。, f 例 1化三重积分 f,z xy z ( Y ) dd为三次积分, x,d积分区域 Q是由曲面 z x 22 z2 X围成的闭区域。= Z y及=一2+ 解根据 x 2 2 x有 x 1因为得到的是最大投影,以 xy 2 y一 y,+所,满足的是 x y≤1 22,+根据该式可知≤2 X则一2,,
故闭区域在平面上的最大投影区域 D (, I+2】据 y得=(y x y≤1根 x)z, 2≤1出、 =[≥z z 2≥x y而根据所给的曲面方程形式,+,可以使用柱坐标变换,
令{p S 0 p+ f C≤<∞ X O= f ≥≥ 22~== z xy
第四章 方程求解
第四章 方程求解
教学目的:学习并掌握计算机代数系统Maple下进行代数方程和微分方程求解的方法和技巧,并了解其在方程求解中的缺限。
教学目标:掌握代数方程和微分方程求解的方法和技巧,并尝试应用所学数学基础解决Maple下关于方程求解的缺陷问题。 重点内容:代数方程求解,微分方程求解。
难点内容:高次代数方程求解,非线性微分方程求解。 1 代数方程(组)求解
1.1 常用求解工具—solve
求解代数方程或代数方程组, 使用Maple中的solve函数. 求解关于x的方程eqn=0的命令格式为:
solve(eqn, x);
求解关于变量组vars的方程组eqns的命令为: solve(eqns, vars); > eqn:=(x^2+x+2)*(x-1);
> solve(eqn,x);
当然, solve也可以求解含有未知参数的方程: > eqn:=2*x^2-5*a*x=1;
> solve(eqn,x);
solve函数的第一个参数是有待求解的方程或方程的集合, 当然也可以是单个表达式或者表达式的集合, 如下例: > solve(a+ln(x-3)-ln(x),x);
对于第二个参数, Maple的标准形式