集合的基本关系教学反思
“集合的基本关系教学反思”相关的资料有哪些?“集合的基本关系教学反思”相关的范文有哪些?怎么写?下面是小编为您精心整理的“集合的基本关系教学反思”相关范文大全或资料大全,欢迎大家分享。
集合的基本关系
篇一:集合间的基本关系
第一单 第二节 集合间的基本关系
第1课时
【使用说明与学法指导】
1.先精读一遍教材P6-P7,用红色笔对重点内容及有疑问的地方进行勾画;再针对导学案二次阅读并解决预习探
究案中的问题;训练案在自习或自主时间完成。
2. 预习时可对合作探究部分认真审题,做不完或者不会的正课时再做,对于选做部分BC层可以不做。
3.找出自己的疑惑和需要讨论的问题并记录下来,准备课上讨论质疑。
【学习目标】
1.了解集合之间包含与相等的含义,能识别给定集合的子集;
2. 理解子集、真子集的概念;能利用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用;
3.了解空集的含义.
【学习重点】子集的概念
【学习难点】元素与子集、属于与包含之间的区别
【知识链接】
1.集合的表示方法有、请用适当的方法表示下列集合.
(1)10以内3的倍数; (2)100以内3的倍数.
2.用适当的符号填空.
(1) 0 N; -1.5 R.
(2)设集合A?{x|(x?1)2(x?3)?0},B?{b},则;bB;.
思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?
【预习案】
认真阅读教材P6-P7,识记并完成如下填空:
1.一般的,对于两个集合A
集合的表示与集合间基本关系练习题
集合的表示与集合间基本关系
一.选择题
1.给出以下四个对象,其中能构成集合的有( )
①八中的年轻教师; ②高一(15)班中身高超过1.70米的同学; ③2010年广州亚运会的比赛项目; ④高一(15)班成绩好的同学 A.1个 B.2个 C.3个 D.4个 2.下列所给关系正确的个数是( ) ①π∈R;②3?Q;③0∈N*;④|-4|?N*. A.1 B.2 C.3 D.4
3.设集合M={x∈R|x≤33},a=26,则( ) A.a?M B.a∈M
C.{a}∈M D.{a|a=26}∈M
4.若集合M={a,b,c},M中元素是△ABC的三边长,则△ABC一定不是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 5.集合P={1,3,5,7}有多少真子集( ) A.8 B.7 C.16 D.15
6.定义集合运算:A*B={z|z=xy,x
1.1.2集合间的基本关系导学案
临清实验高中高一数学新授课导学案
编写人:王宗霞 审核人:国辉 时间:2014,9.8 编号:004
1.1.2集合间的基本关系导学案
学习目标:
1. 了解集合之间包含与相等的含义,能识别给定集合的子集;
2. 理解子集、真子集的概念,了解空集的含义;
3. 能利用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用;
一.自主学习。合作探究
1、子集:对于两个集合A与B,如果集合A的B的元素,我们就说两个集合有包含关系。称集合A是集合B的子集。记作:A B或B A。读作:“A含于B”或“B包含A”;
2、在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为
. 用Venn图表示两个集合间的“包含”关系为: A B(或B A)
. 子集性质:(1)任何一个集合是 的子集;即:A A;
(2)若A B,B C,则 。
3、集合相等:对于两个集合A与B,如果集合A是集合B的子集(AA的子集(B A),此时集合A与集合B的元素是一样的,因此,称集合A与集合B 。记作:A B。
4.真子集:对于两个集合A与B,如果A B,但存在元素x B且x A,我们称集合A是集合B的真子集。记作
2集合间的基本关系及运算
第二套 集合间的基本关系及运算
一、 选择题
1、已知集合P M ,满足M P M = ,则一定有( )
A 、P M =
B 、P M ?
C 、 M P M =
D 、P M ?
2、集合A 含有10个元素,集合B 含有8个元素,集合A∩B 含有3个元素,则集合A ∪B 的元素个数为( )
A 、10个
B 、8个
C 、18个
D 、15个
3、设全集U=R ,M={x|x.≥1}, N ={x|0≤x<5},则(C U M )∪(C U N )为( )
A 、{x|x.≥0}
B 、{x|x<1 或x≥5}
C 、{x|x≤1或x≥5}
D 、{x| x 〈0或x≥5 }
4、设集合{}x A ,4,1=,{}2,1x B =,且{}x B A ,4,1=?,则满足条件的实数x 的个数是( )
A 、1个
B 、2个
C 、3个
D 、4个
5、已知全集U ={非零整数},集合A ={x||x+2|>4, x ∈U}, 则C U A =( )
A 、{-6 , -5 , -4 , -3 , -2 , -1 , 0 , 1 , 2 }
B 、{-6 , -5 , -4 , -3 , -2 , -1 , 1 , 2 }
C 、{ -5 , -4 , -3 , -2 , 0 , -1 , 1 }
D 、{ -5 , -4 , -3 ,
《1.1.2集合间的基本关系》导学案2
《1.1.2集合间的基本关系》导学案2
学习目标
了解子集、真子集、空集的概念,掌握用Venn图表示集合的方法,通过子集理解两集合相等的意义.
学习过程
1.一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A?B(或B?A),读作“A含于B”(或“B包含A”).
2.如果集合A是集合B的子集(A?B),且集合B是集合A的子集(B?A),此时,集合A与集合B中的元素是一样的,因此集合A与集合B相等,记作A=B.
3.如果集合A?B,但存在元素x∈B,且x?A,我们称集合A是集合B的真子集,记作AB(或BA).
4.不含任何元素的集合叫做空集,记作?.
5.空集是任何集合的子集,空集是任何非空集合的真子集. 对点讲练
知识点一:写出给定集合的子集
【例1】 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集; (2)填写下表,并回答问题.
原集合 ? {a} {a,b} {a,b,c} 子集 子集的个数 由此猜想:含n个元素的集合{a1,a2,?,an}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?
解 (1)不含任何
高中数学 1.1.2 集合间的基本关系导学案 新人教A版必修1
§1.1.2 集合间的基本关系
学习目标 1. 了解集合之间包含与相等的含义,能识别给定集合的子集; 2. 理解子集、真子集的概念;
3. 能利用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用; 4. 了解空集的含义. 学习过程 一、课前准备 (预习教材P6~ P7,找出疑惑之处)
复习1:集合的表示方法有 、 、 . 请用适当的方法表示下列集合.
(1)10以内3的倍数;(2)1000以内3的倍数.
复习2:用适当的符号填空.
(1) 0 N;2 Q; -1.5 R.
(2)设集合A?{x|(x?1)2(x?3)?0},B?{b},则1 A;b B;{1,3} A.
思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?
二、新课导学 ※ 学习探究
探究:比较下面几个例子,试发现两个集合之间的关系: A?{3,6,9}与B?{x|x?3k,k?N*且k?333}; C?{东升高中学生}与D?{东升高中高一学生};
E?{x|x(x?1)(x?2)?0}与F?{0,1,2}.
新知:子集、相等、真子集、空集的概念.
① 如果集合A的
2017-2018学年人教A版必修一 集合间的基本关系(2)(教案4)
辽宁省大连市人教A版数学必修1第1章集合与函数(集合教案4)
时间:2017年9月6日 课题 教学 重点 教学 难点 自主 学习 目标 集合的基本关系与方程的交汇问题 集合的基本关系与不等式的交汇问题 集合的基本关系与方程和不等式的交汇问题 课时 第2课时 课型 新授 依据:教参,教材,课程标准,2017年高考大纲 依据:教参,教材, 一、知识目标: (1)牢记集合的基本关系与方程的交汇问题应注意问题 (2) 牢记集合的基本关系与不等式的交汇问题解法和步骤 理由:依据本节课重难点制定 二、能力目标: 体会从特殊到一般的思维,通过归纳数据之间的数量关系,能从实际问题中抽象出数学模型 教具 教学 环节 1. 练习册13页探究四例4 投影、教材,教辅 教学内容 教师行为 学生行为 设计意时图 评价总结 间 1、 组内探究思明确本 路方法 2、 展示 课前3 分钟 节课学3习目标,分准备学钟 习。 3、整理总结 练习册13页针对4 .巡视检查学生1、 学生自己展验收学 预习习题完成情况,进行及时评价。 2.补充学生出现的漏洞。 3.解决学生的问题,并达成共示预习习题生自主 完成情况。 学习的 2、 其余学生互结果,并10相补充并学
高中数学 1.1.2 集合间的基本关系导学案 新人教A版必修1
§1.1.2 集合间的基本关系
学习目标 1. 了解集合之间包含与相等的含义,能识别给定集合的子集; 2. 理解子集、真子集的概念;
3. 能利用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用; 4. 了解空集的含义. 学习过程 一、课前准备 (预习教材P6~ P7,找出疑惑之处)
复习1:集合的表示方法有 、 、 . 请用适当的方法表示下列集合.
(1)10以内3的倍数;(2)1000以内3的倍数.
复习2:用适当的符号填空.
(1) 0 N;2 Q; -1.5 R.
(2)设集合A?{x|(x?1)2(x?3)?0},B?{b},则1 A;b B;{1,3} A.
思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?
二、新课导学 ※ 学习探究
探究:比较下面几个例子,试发现两个集合之间的关系: A?{3,6,9}与B?{x|x?3k,k?N*且k?333}; C?{东升高中学生}与D?{东升高中高一学生};
E?{x|x(x?1)(x?2)?0}与F?{0,1,2}.
新知:子集、相等、真子集、空集的概念.
① 如果集合A的
集合的概念教学反思
篇一:集合的概念教学设计1
集合的概念及相关运算教学设计
一、教材分析
1.知识来源:集合的概念选自湖南教育出版社必修一中第一章集合与函数概念的第一小节;
2. 知识背景: 作为现代数学基础的的集合论,集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学中一些冗长的文字语言.高中数学课程只将集合作为一种语言来学习,作为一种数学简单符号来探究。通过本节课的学习,是阶段性的要求,学生将领悟集合的抽象性及其具体性,学会使用最基本的集合语言去表示有关的数学对象,逐渐发展运用数学语言进行交流的能力。
3.知识外延:集合相关知识的学习对于接下来函数的学习至关重要,高中函数的概念将建立在集合间关系的基础上的。
二、学情分析
1.学生心理特征分析:集合为高一上学期开学后的第一次授课知识,是学生从初中到高中的过渡知识,存在部分同学还沉浸在暑假的懒散中,从而增加了授课的难度。再者,与初中直观、具体、易懂的数学知识相比,集合尤其是无限集合就显得抽象、不易理解,这会给学生产生一定的心理负担,对高中数学知识的学习产生排斥心理。因此本节授课方法就显得十分重要。
2.学生知识结构分析:对于高一的新生来说,能够顺利进入高中知识的学习,基本功还是较扎实的,有良好的学习态度,也
空间图形的基本关系与公理(二)
空间图形的基本关系与公理(二)
西安市阎良区西飞第一中学李晋制作
空间图形的基本关系与公理(二)
公理1:如果一条直线上的两点 两点在一个平面内, 公理 两点 那么这条直线上所有的点 所有的点都在这个平 所有的点 面内.图形语言: 图形语言:A ∈α 符号语言: 符号语言:B ∈ α 直线 AB α
公理1可以帮助我们解决哪些几何问题? 公理 可以帮助我们解决哪些几何问题? 可以帮助我们解决哪些几何问题⑴判定直线或点是否在平面内; ⑵检验平面.
空间图形的基本关系与公理(二)
公理2 公理2 经过不在同一条直线上的 三点, 三点,有且只有一个平面过不共线的三点A,B,C的 过不共线的三点A,B,C的 A,B,C 平面通常记作〝平面ABC 平面通常记作〝平面ABC 〞
A, B, C不共线 A, B, C确定一平面
空间图形的基本关系与公理(二)
讨
论:
你是怎么样来理解公理2 你是怎么样来理解公理2中的 有且只有一个” “有且只有一个” 这句话的 ? 有且只有一个” 含义: 答:“有且只有一个”的 含义: 是存在性和唯一性。 是存在性和唯一性。 注意: 注意: 条件中提到三点不共线的含义。
空间图形的基本关系与公理(二)
推论1: 推论 :经