中考数学几何证明题
“中考数学几何证明题”相关的资料有哪些?“中考数学几何证明题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“中考数学几何证明题”相关范文大全或资料大全,欢迎大家分享。
初中几何证明题思路
学习总结:中考几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形
初中几何证明题思路
学习总结:中考几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形
初中几何证明题思路
学习总结:中考几何题证明思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形
2017年中考数学压轴题、几何证明题必备(2)
一、代数部分
1. 已知:抛物线y?ax2?bx?c与x轴交于A、B两点,与y轴交于点C. 其中点A在x
轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA x2?5x?4?0的两个根,且抛物线的对称轴是直线x?1. (1)求A、B、C三点的坐标; (2)求此抛物线的解析式; (3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC 于点E,连结CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由. y A O D B x E C 2. 已知,如图1,过点E?0,?1?作平行于x轴的直线l,抛物线y?12x上的两点A、B的4横坐标分别为?1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF. (1)求点A、B、F的坐标; (2)求证:CF?DF; (3)点P是抛物线y?12x对称轴右侧图象上的一动点,过点P作PQ⊥PO交x轴4于点Q,是否存在点P使得△OPQ与△CDF相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
立体几何证明题归类
空间直线、平面的平行与垂直问题
一、“线线平行”与“线面平行”的转化问题,“线面平行”与“面面平行”的转
化问题 知识点:
一)位置关系:平行:没有公共点.
相交:至少有一个公共点,必有一条公共直线,公共点都在公共直线上. 相交包括垂直相交和斜交.
二)平行的判定:
(1)定义:没有公共点的两个平面平行.(常用于反证)
(2)判定定理:若一个平面内的两条相交直线平行于另一平面,则这两个平面平行.(线面平行得面面平行)
(3)垂直于同一条直线的两个平面平行.(4)平行于同一个平面的两个平面平行.
(5)过已知平面外一点作这个平面的平行平面有且只有一个.三)平行的性质:
定义:两个平行平面没有公共点.(常用于反证)
性质定理一:若一个平面与两个平行平面都相交,则两交线平行.(面面平行得线线平行,用于判定两直线平行)性质定理二:两个平行平面中的一个平面内的所有直线平行于另一个平面.(面面平行得线面平行,用于判定线面平行)
一条直线垂直于两个平行平面中的一个平面,必垂直于另一个平面.(用来判定直线与平面垂直)
一般地,一条直线与两个平行平面所成的角相等,但反之不然.
夹在两个平行平面间的平行线段相等.特别地,两个平行平面间的距离处处相等.
(1)(2)(3)(4)(5)二、
高中数学立体几何证明题汇总
新课标立体几何证明题汇总
1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点 (1) 求证:EFGH是平行四边形
(2) 若BD=23,AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。
A B
F C
G D
E H
证明:在?ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH?同理,FG//BD,FG?(2) 90° 30 °
考点:证平行(利用三角形中位线),异面直线所成的角
1BD 21BD∴EH//FG,EH?FG∴四边形EFGH是平行四边形。 22、如图,已知空间四边形ABCD中,BC?AC,AD?BD,E是AB的中点。 求证:(1)AB?平面CDE;
(2)平面CDE?平面ABC。
A E
BC?AC?证明:(1)??CE?AB
AE?BE?同理,
AD?BD???DE?AB
AE?BE?B
C
又∵CE?DE?E ∴AB?平面CDE (2)由(1)有AB?平面CDE
又∵AB?平面ABC, ∴平面CDE?平面ABC 考点:线面垂直,面面垂直的判定
D
3、如图,在正方体ABCD?A1B1C1D1中,E是AA1的中点,
数学证明题技巧
第1篇:数学证明题解题技巧
证明
徐琛同学,系黄山学院文学院20xx年度被同学选为学习委员。其工作尽职尽责,深得全班学生和老师的认可。
特此证明
黄山学院文学院
20xx年4月28日
第2篇:数学几何证明题技巧
要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等
1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 *10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等*12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等
1.两全等三
2019-2020年中考数学专题练习几何证明题
2019-2020年中考数学专题练习几何证明题
1.如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线交于点F. (1)求证:△ABE≌△DFE
(2)连结BD、AF,判断四边形ABDF的形状,并说明理由.
E
A
B
C
2.如图,在△ABC中,AB=AC,点D是BC上一动点(不与B、C重合),作DE∥AC交AB于点E,DF∥AB交AC于点F.
(1)当点D在BC上运动时,∠EDF的大小 (变大、变小、不变) (2)当AB=10时,四边形EDF的周长是多少?
A
(3)点D在BC上移动的过程中,AB、DE与DF总存在什么数量关系?请说明. E
F
B
D
3.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE. G D (1)请判断四边形EFGH的形状,并给予证明;
(2)试探究当满足什么条件时,使四边形EFGH是菱形,并说明理由。
H
A E
4.已知:如图,在□ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C
重合,得△GFC. ⑴求证:BEDG;
⑵若∠B60,当AB与BC满足什么数量关系
浅谈初中数学几何证明题解题方法
浅谈初中数学几何证明题解题方法
内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程
关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线
初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。
学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构
初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,
初中证明题
第1篇:初中数学证明题
1.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.
2.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC。求证:AE=BE。
.3.如图,△ABC中,AD
平分∠BAC,BP⊥AD于P,AB=5,BP=2,AC=9。求证:∠ABP=2∠ACB。
B 图1 P B C
4.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.
图
15.点D、E在△ABC的边BC上,AB=AC,AD=AE 求证:BD=CE
6.△ABC中,AB=AC,PB=PC.求证:AD⊥
BC A B D E C
7.已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:
HB=HC
8 如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F.求证:△AEF为等腰三角
形.9.如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,
直线BM、CN交于点F。
(1) 求证:AN=BM;
(2) 求证:△CEF是等边三角形
A
10 如图,△ABC中,D在BC延长线上,且AC=CD,CE