数学线性代数实验总结
“数学线性代数实验总结”相关的资料有哪些?“数学线性代数实验总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学线性代数实验总结”相关范文大全或资料大全,欢迎大家分享。
实验2:线性代数实验
撰写人姓名: 邓阳春 撰写时间: 2009-11-08 审查人姓名: 侯兆欣
实 验 全 过 程 记 录
时间 实验 线性代数实验 名称 姓 名 同实验者 邓阳春 侯兆欣 学 号 学 号 0705020305 0705020125 地点 室 安全07-3班 安全07-1班 数学实验2学时
一、实验目的
1、熟练掌握矩阵的基本运算;
2、熟练掌握一般线性方程组的求解;
3、掌握最小二乘法的MATLAB实现,矩阵特征值、特征向量的求解以及化二次型为标准型。
二、实验内容:
1、利用MATLAB实现矩阵的基本运算;
2、利用MATLAB求解一般线性方程组,利用最小二乘法求解超定方程组; 3、利用MATLAB化二次型为标准型。 三、实验用仪器设备及材料
软件需求:
操作系统:Windows XP或更新的版本; 实用数学软件:MATLAB 7.0或更新的版本。 硬件需求:
Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、 CD-ROM驱动器、打印机、打印纸等。
四、实验原理:
线性代数理论
五、实验步骤:
1、计算下列行列式:
41241202⑴ ;
105
线性代数复习总结
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确
?A可逆 ??r(A)?n ??A的列(行)向量线性无关 ?A的特征值全不为0 A?0???Ax??只有零解 ?? ?x??,Ax?? ????Rn,Ax??总有唯一解 ?AT?A是正定矩阵 ?A?E ??A?p1p2???ps pi是初等阵??存在n阶矩阵B,使得AB?E 或 AB?E注:全体n维实向量构成的集合Rn叫做n维向量空间. ?A不可逆 ?r(A)?n A?0????A的列(行)向量线性相关 ??0是A的特征值 ??Ax??有非零
线性代数公式总结
线性代数
①A?B?B?A
②?A?B??C?A??B?C?
③c?A?B??cA?cB ?c?d?A?cA?dA ④c?dA???cd?A
⑤cA?0?c?0或A?0。 AT??T?A
T ?A?B??AT?BT
?cA?TT?cAT。
?? ?AB??BTAT
??n?n?1??21??Cn2?n?n?1? 2D?a21A21?a22A22???a2nA2n
T转置值不变A?A
逆值变A?1?1 AcA?cnA
?,?1??2,???,?1,???,?2,?
A???1,?2,?3?,3阶矩阵 B???1,?2,?3? A?B?A?B
A?B???1??1,?2??2,?3??3?
A?B??1??1,?2??2,?3??3 A?A0??AB 0B?BE?i,j?c???1
有关乘法的基本运算
Cij?ai1b1j?ai2b2j???ainbnj 线性性质 ?A1?A2?B?A1B?A2B, A?B1?B2??AB1?AB2 ?cA?B?c?AB??A?cB? 结合
线性代数复习总结
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确
?A可逆 ??r(A)?n ??A的列(行)向量线性无关 ?A的特征值全不为0 A?0???Ax??只有零解 ?? ?x??,Ax?? ????Rn,Ax??总有唯一解 ?AT?A是正定矩阵 ?A?E ??A?p1p2???ps pi是初等阵??存在n阶矩阵B,使得AB?E 或 AB?E注:全体n维实向量构成的集合Rn叫做n维向量空间. ?A不可逆 ?r(A)?n A?0????A的列(行)向量线性相关 ??0是A的特征值 ??Ax??有非零
工程数学-线性代数
第一部分
第一章 矩形和行列式
1.矩阵的概念,要求达到“领会”层次。 1.1 理解矩阵的概念。
1.2 熟知单位矩阵、零矩阵的定义。 1.3 理解矩阵相等的定义。
2.消元法与矩阵的初等变换,要求达到“综合应用”层次。 2.1知道n元线性方程组的解是一个n元有序数组。 2.2理解矩形初等变换及矩形等价的概念。
2.3会用初等行变换矩形为阶梯形或简化行阶梯形。 2.4掌握用矩形初等形变换求解线性方程组的方法。
3.举行的运算及其元素按规律,要求达到“综合应用”层次。 3.1熟练掌握矩阵的线性运算(加法及数乘)、乘法、方阵的幂、转置等运算及其运算规律。 特别应注意,矩阵乘法不满足交换律,以及AB=0时不一定有A=0或B=0.
3.2知道上(下)三角形矩阵、对角矩阵、对称矩阵、反对称矩阵的定义极其简单运算性质。 4.分块矩阵及其运算,要求达到“识记”层次。 4.1知道分块矩阵的定义。 4.2了解一般分块矩阵的运算。 4.3掌握分块对角矩阵的运算。
5.行列式的定义与性质要求达到“识记”层次。 5.1知道行列式的定义。
5.2牢记行列式的性质(证明不作要求)。
5.3能去分数乘矩阵与数乘行列式、矩阵相加与行列式相加、方阵相乘与行列式相乘的不同
线性代数习题,数学
第四章练习题(一)
一、填空题
1. 已知向量组α1,α2,α3,α4线性无关,若向量组α1?kα2,α2?α3,α3?α4,α4?α1线性相关,则k? 。
2. 一个向量组含有两个或两个以上的最大无关组,则各个最大无关组所含向量个数必 。
3. 已知α1,α2,α3和β1,β2,β3是3维向量空间的两个基,若向量ξ在这两个基下的坐标分别为(x1,x2,x3)T和(y1,y2,y3)T,且x1?y1?y3,x2?y1?y2?y3, x3??y1?y2?2y3,则由基β1,β2,β3到基α1,α2,α3的过渡矩阵C? 。4. n维向量组α1,α2,?,αm(3?m?n),而α1,α2,?,αm中任何一个向量都不能用其余向量线性表示,是该向量组线性无关的 条件。
?10312???5. 设A???130?11?,若齐次线性方程组Ax?0的基础解系含有3个解向量,则
?2172t???t? 。
?1?2?106. 已知A????15?1?1?二、选择题
1. 如果向量β能由向量组α1,α2,?,αm线性表
线性代数习题,数学
第四章练习题(一)
一、填空题
1. 已知向量组α1,α2,α3,α4线性无关,若向量组α1?kα2,α2?α3,α3?α4,α4?α1线性相关,则k? 。
2. 一个向量组含有两个或两个以上的最大无关组,则各个最大无关组所含向量个数必 。
3. 已知α1,α2,α3和β1,β2,β3是3维向量空间的两个基,若向量ξ在这两个基下的坐标分别为(x1,x2,x3)T和(y1,y2,y3)T,且x1?y1?y3,x2?y1?y2?y3, x3??y1?y2?2y3,则由基β1,β2,β3到基α1,α2,α3的过渡矩阵C? 。4. n维向量组α1,α2,?,αm(3?m?n),而α1,α2,?,αm中任何一个向量都不能用其余向量线性表示,是该向量组线性无关的 条件。
?10312???5. 设A???130?11?,若齐次线性方程组Ax?0的基础解系含有3个解向量,则
?2172t???t? 。
?1?2?106. 已知A????15?1?1?二、选择题
1. 如果向量β能由向量组α1,α2,?,αm线性表
线性代数
线性代数 第 1 次课
章节§1.1二阶与三阶行列式 §1.2全排列及其逆序数 名称 §1.3 n阶行列式的定义 目的要求 掌握二阶与三阶行列式的计算 理解n阶行列式的定义 序号 主 要 内 容 与 时 间 概 算 1 2 3 4 共计 主要内容 二元线性方程组与二阶行列式 三阶行列式 全排列及其逆序数 理解n阶行列式的定义 时间概算 20分钟 15分钟 15分钟 45分钟 95分钟 重点 用对角线法则进行二阶、三阶行列式的计算. 难点 理解n阶行列式的定义. 方法 板书 手段 课堂 二元线性方程组消元法. 三阶行列式的课堂练习计算结果 思 考 题 作 业 题 《最新线性代数习题全解》同济四版配套辅导. 王治军 主编 中国建材参考 工业出版社2003.8 资料 《线性代数》重点内容重点题 杨泮池 赵彦晖 褚维盘 编著 西安交通大学出版社,2004.3
提 问 本次课内学员基本掌握了本次课的内容, 达到了教学目的. 容总结 x已知f(x)?121xx3112x213,求x3的系数. 2x 练习册 练习一 线性代数 第 2 次课
章节§1.4对
线性代数
《线性代数》模拟试卷(一)
一. 一. 填空题(20/5)
1.已知A是5阶方阵,且|A|?2,则|A*|?____________.
2.设A?(aij)1?3,B?(bij)3?1,则B?A??______________.
3.设?1?(3,3,3),?2?(?1,1,?3),?3?(2,1,3),则?1,?2,?3线性_____关.
4.若A100?0,则(I?A)?1?_____________.
?12?5.设|A|?0,??2为A的特征值,则A有一特征值为_________,?A??3?有一特征值为__________.
二. 二. 选择填空(20/5)
?.1.设A,B为n阶对称矩阵,则下面四个结论中不正确的是?2?1A.A?B也是对称矩阵B.AB也是对称矩阵D.AB??BA?也是对称矩阵
C.Am?Bm(m?N?)也是对称矩阵
?A?0?2.设A和B都是n阶可逆矩阵,则(?2)??1????0B?A.(?2)2n|A||B|?1B.(?2)n|A||B|?1C.?2|A?||B|D.?2|A||B|?1
3.当n个未知量m个方程的齐次线性方程组满足条件??.
?时,此方程组一定有非零解.A.n
线性代数公式定理总结
1 / 35
第一章 行列式
1.逆序数 1.1 定义
n个互不相等的正整数任意一种排列为:i1i2???in,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不
同时,就说有一个逆序数,该排列全部逆序数的总合用?数字的个数之和。 1.2 性质
一个排列中任意两个元素对换,排列改变奇偶性,即 ?2证明如下:
设排列为a1?alab1?bmbc1?cn,作m次相邻对换后,变成a1?alabb1?bmc1?cn,再作m?1次相邻对换后,变成a1?albb1?bmac1?cn,共经过2m?1次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于?2故原命题成立。
2.n阶行列式的5大性质
性质1:转置(行与列顺次互换)其值不变。 性质2:互换任意两行(列)其值变号。
性质3:任意某行(列)可提出公因子到行列式符号外。 性质4:任意行列式可按某行(列)分解为两个行列式之和。 性质5:把行列式某行(列)?倍后再加到另一行(列),其值不变。
行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。
评 注 对性质4的重要拓展: 设n阶同型矩阵,
n?i1i2???in?表示,??