数学线性代数实验总结

“数学线性代数实验总结”相关的资料有哪些?“数学线性代数实验总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学线性代数实验总结”相关范文大全或资料大全,欢迎大家分享。

实验2:线性代数实验

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

撰写人姓名: 邓阳春 撰写时间: 2009-11-08 审查人姓名: 侯兆欣

实 验 全 过 程 记 录

时间 实验 线性代数实验 名称 姓 名 同实验者 邓阳春 侯兆欣 学 号 学 号 0705020305 0705020125 地点 室 安全07-3班 安全07-1班 数学实验2学时

一、实验目的

1、熟练掌握矩阵的基本运算;

2、熟练掌握一般线性方程组的求解;

3、掌握最小二乘法的MATLAB实现,矩阵特征值、特征向量的求解以及化二次型为标准型。

二、实验内容:

1、利用MATLAB实现矩阵的基本运算;

2、利用MATLAB求解一般线性方程组,利用最小二乘法求解超定方程组; 3、利用MATLAB化二次型为标准型。 三、实验用仪器设备及材料

软件需求:

操作系统:Windows XP或更新的版本; 实用数学软件:MATLAB 7.0或更新的版本。 硬件需求:

Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、 CD-ROM驱动器、打印机、打印纸等。

四、实验原理:

线性代数理论

五、实验步骤:

1、计算下列行列式:

41241202⑴ ;

105

线性代数复习总结

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确

?A可逆 ??r(A)?n ??A的列(行)向量线性无关 ?A的特征值全不为0 A?0???Ax??只有零解 ?? ?x??,Ax?? ????Rn,Ax??总有唯一解 ?AT?A是正定矩阵 ?A?E ??A?p1p2???ps pi是初等阵??存在n阶矩阵B,使得AB?E 或 AB?E注:全体n维实向量构成的集合Rn叫做n维向量空间. ?A不可逆 ?r(A)?n A?0????A的列(行)向量线性相关 ??0是A的特征值 ??Ax??有非零

线性代数公式总结

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

线性代数

①A?B?B?A

②?A?B??C?A??B?C?

③c?A?B??cA?cB ?c?d?A?cA?dA ④c?dA???cd?A

⑤cA?0?c?0或A?0。 AT??T?A

T ?A?B??AT?BT

?cA?TT?cAT。

?? ?AB??BTAT

??n?n?1??21??Cn2?n?n?1? 2D?a21A21?a22A22???a2nA2n

T转置值不变A?A

逆值变A?1?1 AcA?cnA

?,?1??2,???,?1,???,?2,?

A???1,?2,?3?,3阶矩阵 B???1,?2,?3? A?B?A?B

A?B???1??1,?2??2,?3??3?

A?B??1??1,?2??2,?3??3 A?A0??AB 0B?BE?i,j?c???1

有关乘法的基本运算

Cij?ai1b1j?ai2b2j???ainbnj 线性性质 ?A1?A2?B?A1B?A2B, A?B1?B2??AB1?AB2 ?cA?B?c?AB??A?cB? 结合

线性代数复习总结

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确

?A可逆 ??r(A)?n ??A的列(行)向量线性无关 ?A的特征值全不为0 A?0???Ax??只有零解 ?? ?x??,Ax?? ????Rn,Ax??总有唯一解 ?AT?A是正定矩阵 ?A?E ??A?p1p2???ps pi是初等阵??存在n阶矩阵B,使得AB?E 或 AB?E注:全体n维实向量构成的集合Rn叫做n维向量空间. ?A不可逆 ?r(A)?n A?0????A的列(行)向量线性相关 ??0是A的特征值 ??Ax??有非零

工程数学-线性代数

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第一部分

第一章 矩形和行列式

1.矩阵的概念,要求达到“领会”层次。 1.1 理解矩阵的概念。

1.2 熟知单位矩阵、零矩阵的定义。 1.3 理解矩阵相等的定义。

2.消元法与矩阵的初等变换,要求达到“综合应用”层次。 2.1知道n元线性方程组的解是一个n元有序数组。 2.2理解矩形初等变换及矩形等价的概念。

2.3会用初等行变换矩形为阶梯形或简化行阶梯形。 2.4掌握用矩形初等形变换求解线性方程组的方法。

3.举行的运算及其元素按规律,要求达到“综合应用”层次。 3.1熟练掌握矩阵的线性运算(加法及数乘)、乘法、方阵的幂、转置等运算及其运算规律。 特别应注意,矩阵乘法不满足交换律,以及AB=0时不一定有A=0或B=0.

3.2知道上(下)三角形矩阵、对角矩阵、对称矩阵、反对称矩阵的定义极其简单运算性质。 4.分块矩阵及其运算,要求达到“识记”层次。 4.1知道分块矩阵的定义。 4.2了解一般分块矩阵的运算。 4.3掌握分块对角矩阵的运算。

5.行列式的定义与性质要求达到“识记”层次。 5.1知道行列式的定义。

5.2牢记行列式的性质(证明不作要求)。

5.3能去分数乘矩阵与数乘行列式、矩阵相加与行列式相加、方阵相乘与行列式相乘的不同

线性代数习题,数学

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第四章练习题(一)

一、填空题

1. 已知向量组α1,α2,α3,α4线性无关,若向量组α1?kα2,α2?α3,α3?α4,α4?α1线性相关,则k? 。

2. 一个向量组含有两个或两个以上的最大无关组,则各个最大无关组所含向量个数必 。

3. 已知α1,α2,α3和β1,β2,β3是3维向量空间的两个基,若向量ξ在这两个基下的坐标分别为(x1,x2,x3)T和(y1,y2,y3)T,且x1?y1?y3,x2?y1?y2?y3, x3??y1?y2?2y3,则由基β1,β2,β3到基α1,α2,α3的过渡矩阵C? 。4. n维向量组α1,α2,?,αm(3?m?n),而α1,α2,?,αm中任何一个向量都不能用其余向量线性表示,是该向量组线性无关的 条件。

?10312???5. 设A???130?11?,若齐次线性方程组Ax?0的基础解系含有3个解向量,则

?2172t???t? 。

?1?2?106. 已知A????15?1?1?二、选择题

1. 如果向量β能由向量组α1,α2,?,αm线性表

线性代数习题,数学

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第四章练习题(一)

一、填空题

1. 已知向量组α1,α2,α3,α4线性无关,若向量组α1?kα2,α2?α3,α3?α4,α4?α1线性相关,则k? 。

2. 一个向量组含有两个或两个以上的最大无关组,则各个最大无关组所含向量个数必 。

3. 已知α1,α2,α3和β1,β2,β3是3维向量空间的两个基,若向量ξ在这两个基下的坐标分别为(x1,x2,x3)T和(y1,y2,y3)T,且x1?y1?y3,x2?y1?y2?y3, x3??y1?y2?2y3,则由基β1,β2,β3到基α1,α2,α3的过渡矩阵C? 。4. n维向量组α1,α2,?,αm(3?m?n),而α1,α2,?,αm中任何一个向量都不能用其余向量线性表示,是该向量组线性无关的 条件。

?10312???5. 设A???130?11?,若齐次线性方程组Ax?0的基础解系含有3个解向量,则

?2172t???t? 。

?1?2?106. 已知A????15?1?1?二、选择题

1. 如果向量β能由向量组α1,α2,?,αm线性表

线性代数

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

线性代数 第 1 次课

章节§1.1二阶与三阶行列式 §1.2全排列及其逆序数 名称 §1.3 n阶行列式的定义 目的要求 掌握二阶与三阶行列式的计算 理解n阶行列式的定义 序号 主 要 内 容 与 时 间 概 算 1 2 3 4 共计 主要内容 二元线性方程组与二阶行列式 三阶行列式 全排列及其逆序数 理解n阶行列式的定义 时间概算 20分钟 15分钟 15分钟 45分钟 95分钟 重点 用对角线法则进行二阶、三阶行列式的计算. 难点 理解n阶行列式的定义. 方法 板书 手段 课堂 二元线性方程组消元法. 三阶行列式的课堂练习计算结果 思 考 题 作 业 题 《最新线性代数习题全解》同济四版配套辅导. 王治军 主编 中国建材参考 工业出版社2003.8 资料 《线性代数》重点内容重点题 杨泮池 赵彦晖 褚维盘 编著 西安交通大学出版社,2004.3

提 问 本次课内学员基本掌握了本次课的内容, 达到了教学目的. 容总结 x已知f(x)?121xx3112x213,求x3的系数. 2x 练习册 练习一 线性代数 第 2 次课

章节§1.4对

线性代数

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

《线性代数》模拟试卷(一)

一. 一. 填空题(20/5)

1.已知A是5阶方阵,且|A|?2,则|A*|?____________.

2.设A?(aij)1?3,B?(bij)3?1,则B?A??______________.

3.设?1?(3,3,3),?2?(?1,1,?3),?3?(2,1,3),则?1,?2,?3线性_____关.

4.若A100?0,则(I?A)?1?_____________.

?12?5.设|A|?0,??2为A的特征值,则A有一特征值为_________,?A??3?有一特征值为__________.

二. 二. 选择填空(20/5)

?.1.设A,B为n阶对称矩阵,则下面四个结论中不正确的是?2?1A.A?B也是对称矩阵B.AB也是对称矩阵D.AB??BA?也是对称矩阵

C.Am?Bm(m?N?)也是对称矩阵

?A?0?2.设A和B都是n阶可逆矩阵,则(?2)??1????0B?A.(?2)2n|A||B|?1B.(?2)n|A||B|?1C.?2|A?||B|D.?2|A||B|?1

3.当n个未知量m个方程的齐次线性方程组满足条件??.

?时,此方程组一定有非零解.A.n

线性代数公式定理总结

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

1 / 35

第一章 行列式

1.逆序数 1.1 定义

n个互不相等的正整数任意一种排列为:i1i2???in,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不

同时,就说有一个逆序数,该排列全部逆序数的总合用?数字的个数之和。 1.2 性质

一个排列中任意两个元素对换,排列改变奇偶性,即 ?2证明如下:

设排列为a1?alab1?bmbc1?cn,作m次相邻对换后,变成a1?alabb1?bmc1?cn,再作m?1次相邻对换后,变成a1?albb1?bmac1?cn,共经过2m?1次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于?2故原命题成立。

2.n阶行列式的5大性质

性质1:转置(行与列顺次互换)其值不变。 性质2:互换任意两行(列)其值变号。

性质3:任意某行(列)可提出公因子到行列式符号外。 性质4:任意行列式可按某行(列)分解为两个行列式之和。 性质5:把行列式某行(列)?倍后再加到另一行(列),其值不变。

行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。

评 注 对性质4的重要拓展: 设n阶同型矩阵,

n?i1i2???in?表示,??