解析几何在高考中的地位
“解析几何在高考中的地位”相关的资料有哪些?“解析几何在高考中的地位”相关的范文有哪些?怎么写?下面是小编为您精心整理的“解析几何在高考中的地位”相关范文大全或资料大全,欢迎大家分享。
历届高考中的“解析几何初步”试题精选(A)
学习资料
历届高考中的“解析几何初步”试题精选(A)
一、选择题:
1.(2007浙江文、理)直线x-2y+1=0关于直线x=1对称的直线方程是( ) (A)x+2y-1=0 (B)2 x+y-1=0 (C)2 x+y-3=0 (D) x+2y-3=0 2.(2006福建文)已知两条直线y ax 2和y (a 2)x 1互相垂直,则a等于( ) (A)2 (B)1 (C)0 (D) 1 3.(2005北京文、理)”m=
1
”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( ) 2
(A)充分必要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件
4.(2005全国卷III文、理)已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为( )
(A)0 (B)-8 (C)2 (D)10
5.(2005浙江文、理)点(1,-1)到直线x-y+1=0的距离是( ) (A)
13 (B)
(C)
(D) 2222
6.(2004全国卷Ⅱ文)已知点A(1,2),B(3,1),则线段AB的垂直
解析几何高考复习
解析几何高考复习
一、抛物线
1、已知抛物线C:y?4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点。(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程; (II)问是否存在定点M,不论直线l绕点M如何转动,使得
2、已知抛物线C:y?mx(m?0),焦点为F,直线2x?y?2?0 交抛物线C于A、 (1)若抛物线C B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q,上有一点R(xR,2)到焦点F的距离为3,求此时m的值; (2)是否存在实数m,使?ABQ 是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由。
3、知F为抛物线y?2px?p?0?的焦点,抛物线上点G的横坐标为2,且满足GF?3
22211恒为定值。 ?22|AM||BM|(1)求抛物线的方程;(2)点M?2,0?的坐标为,过点F作斜率为k1的直线与抛物线交于
A,B两点。A,B两点的横坐标不为2。连接AM,BM并延长交抛物线于C,D两点,设直线CD的斜率为k2,判断
k1是否作为定值?若是,求出定值;若不是,说明理由。 k2DAOFBMC4、如图,已知抛物线C:
高考文科解析几何专题
高考文科解析几何专题
解析几何是高中数学的重要内容之一,也是衔接初等数学和高等数学的纽带。而圆锥曲线是解析几何的重要内容,因而成为高考考查的重点。研究圆锥曲线,无外乎抓住其方程和曲线两大特征。它的方程形式具有代数的特性,而它的图像具有典型的几何特性,因此,它是代数与几何的完美结合。高中阶段所学习和研究的圆锥曲线主要包括三类:椭圆、双曲线和抛物线。
【重要知识点】
1.两条相交直线l1与l2的夹角:是指由l1与l2相交所成的四个角中最小的正角?,又称为l1k2?k1??????900,tan??和l2所成的角,它的取值范围是?,当,则有。 ?2?1?kk??12?l1:A1x?B1y?C1?0的交点的直线系方程A1x?B1y?C1??(A2x?B2y?C2)?0(?l:Ax?By?C?022?222.过两直线?为参数,A2x?B2y?C2?0不包括在内)。
3.设点P(x0,y0),直线l:Ax?By?C?0,P到l的距离为d,则有d?Ax0?By0?CA?B22.
4.两点P1(x1,y1)、P2(x2,y2)的距离公式:|P1P2|?(x2?x1)2?(y2?y1)2 5.两直线l1:y1?k1x1?b1,l2:y2?k2x2?b2的位置关
天津高考解析几何理科
(2015) 已知椭圆
的左焦点为,离心率为,点
在椭圆上且位于第一象限,直线被圆截得的线段的长为,
。
(Ⅰ)求直线
的斜率;
(Ⅱ)求椭圆的方程; (Ⅲ)设动点
在椭圆上,若直线
的斜率大于
,求直线
(
为原点)
的斜率的取值范围。
(2014) 设椭圆+
=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,
上顶点为B,已知|AB|=
|F1F2|.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.
(2013) 设椭圆x2y2ab?b?0)的左焦点为F, 离心率为32?2?1(a3, 过点F且与x
轴垂直的直线被椭圆截得的线段长为433.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D
两点. 若???AC?·???DB?????AD?·???CB??8, 求k的值.
(本小题满分14分)设椭圆x2a+y2(2012)2b2=1(a>b>0)的
解析几何
汤建良:《解析几何》课程教学大纲
深圳大学数学与计算科学学院
课程教学大纲
(2006年10月重印版)
课程编号 22143102
课程名称 解析几何
课程类别 专业必修
教材名称 解析几何
制 订 人 汤建良
审 核 人 刘则毅
2005年 4 月修订
- 1 -
汤建良:《解析几何》课程教学大纲
一、课程设计的指导思想
(一)课程性质 1.课程类别:专业必修课 2.适应专业:数学与应用数学专业(应用数学方向) 3.开设学期:第壹学期 4.学时安排:周学时3,总学时42 5.学分分配:3学分 (二)开设目的 解析几何是中学几何的继续与发展,既有深刻的数学理论意义,也有广泛的实际应用价值。在实际工程中的许多重要领域都有它的应用价值。通过本课程的学习,同学们还可以加深对中学三角和几何学的认识与理解,有助于解决一些初等数学问题。解析几何的一些思想方法在数学中具有普遍性。通过本课程的学习,能使学生提高数学素养,并为学习有关后继课程以及进一步扩大数学知识面奠定必要的数学基础。 (三)基本要求 掌握解析几何的基本理论与方法,深刻理解解
解析几何
篇一:解析几何知识点总结
抛物线的标准方程、图象及几何性质:p?0
1、定义:
2、几个概念:
① p的几何意义:焦参数p是焦点到准线的距离,故p为正数;1
② ;
4
③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p
3、如:AB是过抛物线y2?2px(p?0)焦点F的弦,M是AB的中点,l是抛物线的准线,MN?l,N为垂足,BD?l,AH?l,D,H为垂足,求证:
(1)HF?DF; (2)AN?BN; (3)FN?AB;
(4)设MN交抛物线于Q,则Q平分MN;
2
(5)设A(x1,y1),B(x2,y2),则y1y2??p,x1x2?
12
p; 4
(6)1?1
|FA|
|FB|
?
2; p
(7)A,O,D三点在一条直线上
2
(8)过M作ME?AB,ME交x轴于E,求证:|EF|?1|AB|,|ME|?|FA|?|FB|;
2
1、 双曲线的定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|e(e注意: |
F1F2|)的点的轨迹。
?1)的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。
PF1|?|PF2|?2a与|PF2|?|PF1|?2a(2a?|F1F2
大学解析几何
空间解析几何
基本知识 一、向量
1、已知空间中任意两点M1(x1,y1,z1)和M2(x2,y2,z2),则向量
M1M2?(x2?x1,y2?y1,z2?z1)
2、已知向量a?(a1,a2,a3)、b?(b1,b2,b3),则 (1)向量a的模为|a|???????a1?a2?a3
222(2)a?b?(a1?b1,a2?b2,a3?b3) (3)?a?(?a1,?a2,?a3) 3、向量的内积a?b
(1)a?b?|a|?|b|?cos?a,b? (2)a?b?a1b1?a2b2?a3b3
其中?a,b?为向量a,b的夹角,且0??a,b???
注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。 4、向量的外积a?b(遵循右手原则,且a?b?a、a?b?b)
??????????????????????????ia?b?a1??ja2b2??ka3 b3??b1??5、(1)a//b?a??b?????a1a2a3 ??b1b2b3(2)a?b?a?b?0?a1b1?a2b2?a3b3?0 二、平面
100
1、平面的点法式方程
已知平面过点P(x0,y0,z0),且法向量为n?(A,B,C),则平面方程为
解析几何1
《解析几何》教学大纲
一. 总 则
1. 本课程的教学目的和要求:
解析几何和其他自然科学一样,是在生产实践中产生和发展起来的,有着丰富的内容和实际背景,广泛应用于工程技术,物理、化学、生物、经济及其他领域。本课程的教学目的在于培养学生运用解析方法解决几何与实际问题的能力,掌握空间几何课程的基本知识和内容,并为进一步学习后继课程作准备。 2. 本课程的主要内容: 第一章 矢量与坐标 第二章 轨迹与方程 第三章 平面与空间直线
第四章 柱面、椎面、旋转曲面与二次曲面 第五章 二次曲线的一般理论 3. 教学重点与难点:
重点:空间直线、平面、常见二次曲面和平面、一般二次曲线的理论。 难点:已知条件求轨迹。
4. 本课程的知识范围以及与相关课程的关系:
本课程主要以线性代数为工具,研究空间解析几何,即研究空间中的直线、平面、二次曲线及平面上的二次曲线。解析几何与高等代数、数学分析有着密切的关系。在数学分析中,常常用到解析几何的方法图形的许多性质,并且解析几何为代数中不少对象提供了具体的几何解释,给代数以直观的几何形象,加强了数量关系的直观鲜明性,使几何、分析、代数构成了一个不可分
高考文科数学解析几何练习题
解析几何单元易错题练习
一.考试内容:
椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求:
掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 掌握双曲线的定义、标准方程和双曲线的简单几何性质. 掌握抛物线的定义、标准方程和抛物线的简单几何性质. 了解圆锥曲线的初步应用.
【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识: 椭圆及其标准方程
椭圆的定义:椭圆的定义中,平面内动点与两定点|
F1、F2的距离的和大于|F1F2|这个条件不可忽视.若这个距离之和小于
F1F2|,则这样的点不存在;若距离之和等于|F1F2|,则动点的轨迹是线段F1F2.
x2y2y2x2?2?1?2?122abbb2.椭圆的标准方程:a(>>0),a(a>b>0).
2y3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果x项的分母大于
2项的分母,则椭圆的焦点在x
轴上,反之,焦点在y轴上.
4.求
赏析一道高考解析几何试题
●
解题技巧与方法
●龉
●
蠢啊 遵考撅 诫题◎林琳 (广西恭城县恭城中学 5 4 2 5 0 0 )一
沙一世界,一花一天国,一道优质试题也能折射出数
二、追根溯源
学的理性光芒 .例如 2 0 1 3年高考陕西卷理科第 2 O题,结构美妙、结论和谐,让人在悠远的意境中感受到深邃的数学之美.
1 .广阔的背景
笛卡尔( 1 5 9 6—1 6 5 0 )认为欧氏几何“使人在想象力大大疲乏的情况下,去练习理解力”,代数则是“用来阻碍思想的艺术,不像一门改进思想的科学”,于是他“寻求另外一种包括这两门科学的优点而没有它们的缺点的方法”,并最终
题目:已知动圆过定点 A( 4, 0 ),且在 y轴上截得的弦MⅣ的长为 8 .
(I)求动圆圆心的轨迹 C的方程; (Ⅱ)已知点丑 (一1, 0 ),设不垂直于轴的直线 z与轨迹 C交于不同的两点 P, Q,若轴是 P B Q的角平分线,证明直线 f过定点. 答案: (I)轨迹 C的方程为: y 2=8 x; (Ⅱ)直线 Z过定点( 1, 0) .一
获得了建立解析几何的线索.平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,从而实现了几何方法与代数方法的结合,她的研究