一次函数典型题目讲解

“一次函数典型题目讲解”相关的资料有哪些?“一次函数典型题目讲解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一次函数典型题目讲解”相关范文大全或资料大全,欢迎大家分享。

一次函数典型题目

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

一次函数专题练习

一.选择题(共2小题) 1.(2013?重庆)2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下面能反映y与x的函数关系的大致图象是( ) A. B. C. D. 2.(2013?自贡)如图,已知A、B是反比例函数

上的两点,BC∥x轴,交y轴于C,动点P

从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( )

A. B. C. D.

二.解答题(共21小题) 3.(2012?聊城)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2). (1)求直线AB的解析式;

(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.

4.(2012?抚顺)如图,已知一次函数y=﹣x+b的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA. (1)求此一次函

一次函数25.5 一次函数的应用

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

《一次函数》常考题一次函数的应用

解答题

151.(2004?福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费) (1)根据图象分别求出l1,l2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等?

(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.

152.(2001?南京)某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示. 当成人按规定剂量服药后,

(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;

(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?

﹣3

153.(2002?大连)某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,

初中一次函数典型应用题

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

--

-- 中考一次函数应用题

近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由于条件多,题目长,很多考生无法下手,打不开思路,在考场上出现了僵局,在这里,我特举几例,也许对你有所帮助。

例1 已知雅美服装厂现有A 种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M 型号的时装需要A 种布料0.6米,B 种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B 种布料0.4米,可获利润50元。若设生产N种型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。

(1)求y 与x 的函数关系式,并求出自变量的取值范围;

(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?

例2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

(1)写出每月电话费y (元)与通话次数x 之间的函数关系式;

(2)分别求出月通话50次、100次的电话费;

(3)如果某月的电话费是27.8元,求该月通话的次数。

例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安

初中一次函数典型应用题

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

--

-- 中考一次函数应用题

近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由于条件多,题目长,很多考生无法下手,打不开思路,在考场上出现了僵局,在这里,我特举几例,也许对你有所帮助。

例1 已知雅美服装厂现有A 种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M 型号的时装需要A 种布料0.6米,B 种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B 种布料0.4米,可获利润50元。若设生产N种型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。

(1)求y 与x 的函数关系式,并求出自变量的取值范围;

(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?

例2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

(1)写出每月电话费y (元)与通话次数x 之间的函数关系式;

(2)分别求出月通话50次、100次的电话费;

(3)如果某月的电话费是27.8元,求该月通话的次数。

例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安

一次函数复习

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

临河八中“题组教学法”学案

§课题: 第19章一次函数复习(第一课时)

班级 学生姓名 小组 授课日期 学案编号 备课 教师 杨喜娥 授课 教师 审核 教师 课后 反思 教师寄语:如果知识不是每天在增加,就会不断地减少。 学生 目标一:通过简单实例,了解常量、变量的意义。 纠错 题组一、 1.圆周长公式C=2πR中,下列说法正确的是( ) (A)π、R是变量,2为常量 (B)C、R为变量,2、π为常量 (C)R为变量,2、π、C为常量 (D)C为变量,2、π、R为常量 2. 常量和变量是在“某一变化过程中”来研究确定的,以s=vt为例若速度v固定,则常量是________,变量是________; 目标二:能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 题组二、 1.下列各图给出了变量x与y之间的函数是( )。 y y y y o o o o x x x x CBDA 2. 下列关系式中,y不是x的函数关系的是( ) xA.y? B . y?2x2 C . y?x(x?0) D.y?

一次函数习题

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

寒假辅导习题练习(一):一次函数

第一部分:选择题

1.下列函数中,自变量x的取值范围是x≥2的是( ) A.y=2?x B.y=2.下面哪个点在函数y=

121x?2 C.y=4?x2 D.y=x?2〃x?2

x+1的图象上( )

A.(2,1) B.(-2,1) C.(2,0) D.(-2,0) 3.下列函数中,y是x的正比例函数的是( ) A.y=2x-1 B.y=

x3 C.y=2x2 D.y=-2x+1

4.一次函数y=-5x+3的图象经过的象限是( ) A.一、二、三 B.二、三、四 C.一、二、四 D.一、三、四

6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )

A.k>3 B.0

7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )

A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1

8.汽车开

一次函数教案

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】
第1篇第2篇第3篇第4篇第5篇更多顶部

目录

第一篇:一次函数(一)教案 第二篇:一次函数性质教案 第三篇:教案-一元一次不等式与一次函数 第四篇:一次函数与一元一次不等式说课稿 教案及反思 第五篇:(新课程)高中数学 《2.2.1 一次函数的性质与图像》教案 新人教b版必修1 更多相关范文

正文

第一篇:一次函数(一)教案

§11.2.2一次函数(一)教案2014-10-31伊通三中李金雪 一、教学目标

理解正比例函数的概念 掌握正比例函数解析式特点 二、教学重点

正比例函数解析式(请关注好 范 文 网气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y?与x的关系.

这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课

我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?

1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c?的值约是t的7倍与35的差.

2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.

3.某城市的市内电话的月收费额y(元)包括:月租费

一次函数复习

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

临河八中“题组教学法”学案

§课题: 第19章一次函数复习(第一课时)

班级 学生姓名 小组 授课日期 学案编号 备课 教师 杨喜娥 授课 教师 审核 教师 课后 反思 教师寄语:如果知识不是每天在增加,就会不断地减少。 学生 目标一:通过简单实例,了解常量、变量的意义。 纠错 题组一、 1.圆周长公式C=2πR中,下列说法正确的是( ) (A)π、R是变量,2为常量 (B)C、R为变量,2、π为常量 (C)R为变量,2、π、C为常量 (D)C为变量,2、π、R为常量 2. 常量和变量是在“某一变化过程中”来研究确定的,以s=vt为例若速度v固定,则常量是________,变量是________; 目标二:能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 题组二、 1.下列各图给出了变量x与y之间的函数是( )。 y y y y o o o o x x x x CBDA 2. 下列关系式中,y不是x的函数关系的是( ) xA.y? B . y?2x2 C . y?x(x?0) D.y?

19.2.2一次函数(2)一次函数的图像和性质

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

提问复习 1、什么叫正比例函数、一次函数?它 们之间有什么关系? 一般地,形如 y=kx(k是常数,k≠0) 的函数, 叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫 做一次函数。

当b=0时,y=kx+b就变成了 y=kx ,所以说正 比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是(经过原点的一条直线

)

3、正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?y=kx 图 象y

性 质经过一、三象限 y随x增大而增大

K>0y

x

K<0

x

经过二、四象限 y随x增大而减小

既然正比例函数是特殊的一次 函数,正比例函数的图象是直线, 那么一次函数的图象也会是一条直 线吗? 它们图象之间有什么关系? 一次函数又有什么性质呢?

探索新知1、认识一次函数的图像画图:请大家用描点法在同一坐标系中画出函数函数y=-2x, y=-2x+3,y=-2x-3的图象。

1、列表 x y=-2x

2、描点 … -2 … 4 -1 0

3、连线 2 … -2 -4 … 1 -1 … 1

25 -1

03

y=-2x+3 … 7 y=-2x-3 … 1

-3 -5 -7 …

比一比:正比例函

一次函数综合运用

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

一次函数的应用

1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),下图的折线表示x与y之间的函数关系。

(1)甲乙两地之间的距离为______km (2) 请解释图中点B的实际意义 (3)求慢车和快车的速度

2邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校,小王从A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计王道1分钟,二人与县城的距离s(千米)和小王从县城出发后的时间t(分),之间关系如图,假设二人交流的时间不计。

(1) 小王和李明第一次相遇时,距县城_____千米 (2) 求小王从县城出发到返回县城所用的时间 (3) 李明从A村到县城公用多少时间?

3甲乙两车分别从A,B两地同时相向而行,匀速开往对方所在地。图1表示甲乙两车离A地的路程y(km)与出发时间x(h)的函数图象,图2表示甲乙两车之间的路程y(km)与出发时间x(h)的函数图象。

(1)A,B两地的为_______km, h的实际意义是_________