第十三章全等三角形思维导图
“第十三章全等三角形思维导图”相关的资料有哪些?“第十三章全等三角形思维导图”相关的范文有哪些?怎么写?下面是小编为您精心整理的“第十三章全等三角形思维导图”相关范文大全或资料大全,欢迎大家分享。
第十三章全等三角形全章教案
课题:11.1全等三角形
教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质
3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,
4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣
重点:探究全等三角形的性质
难点:掌握两个全等三角形的对应边,对应角 教学过程:
观察图案,指出这些图案中中形状与大小相同的图形 问题:你还能举出生活中一些实际例子吗?
这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形 能够完全重合的两个三角形叫做全等三角形 思考:
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用?表示,读作“全等于” 两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如?ABC和?DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作?ABC≌?DEF
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合 的角叫做对应角
思考:如上图,11。1-1
初二数学第十三章全等三角形测试题及答案
初中数学辅导网 http://www.shuxuefudao.cn
全等三角形测试题
一.选择题:
1. 在△ABC和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保证△ABC≌△
A’B’C’, 则补充的这个条件是( )
A.BC=B’C’ B.∠A=∠A’ C.AC=A’C’ D.∠C=∠C’ 2. 直角三角形两锐角的角平分线所交成的角的度数是( ) A.45° B.135° C.45°或135° D.都不对
3. 现有两根木棒,它们的长分别是40cm和50cm,若要钉成一个三角形木架,则在下列
四根木棒中应选取( )
A.10cm的木棒 B.40cm的木棒 C.90cm的木棒 D.100cm的木棒 4.根据下列已知条件,能惟一画出三角形ABC的是( )
A. AB=3,BC=4,AC=8; B. AB=4,BC=3,∠A=30; C. ∠A=60,∠B=45,AB=4; D. ∠C=90,AB=6
5.如图3,D,E分别是△ABC的边BC,AC上的点,若∠B=∠C,
A ∠ADE=∠AED,则( )
全等三角形
第十一章:全等三角形导学案
黑龙江省依兰县第一中学
11.1《全等三角形》导学案
【使用说明与学法指导】
1. 课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。 2 .组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。 4.人人参与,合作学习,人人都有收获,人人都有进步。 5.带﹡的题要多动脑筋,展示你的能力。
一、学习目标:
1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。 2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。 三、学习过程
《课前预习案》
(一)、自主预习课本2—3页内容,回答下列问题:
1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形 。
3、把两个全等的三角形重合在一起,重合的顶点叫做
全等三角形
第一讲 全等三角形
一、知识网络图:
1
2 3 为什么没有SSA?(反例)
三、例题解析
例:E、F分别为正方形ABCD的边BC,CD上的两个点,且BE=CF,求证:AE CF
E
D F
四、真题精讲
1.(2012 柳州)如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )
A.PO B.PQ C.MO D.MQ
2.(2012中考)如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A.∠BCA=∠F B.
3.(2012 聊城)如图,四边形不一定全等的条件是( )
A.DF=BE B.AF=CE
4.(2012十堰)如图,梯形,则梯形ABCD的周长为( B A.22 B.24
5.(2012义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是 DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等) .(不添加
第十一章全等三角形导学案
课题:11.1全等三角形(1) 月 日 班级: 姓名:
(二)学习重点和难点:
1.重点:全等三角形的概念.
2.难点:找对应顶点、对应边、对应角.
二、自主学习:阅读P1—4页回答下列问题:
1.指出P2页中彩图中形状、大小相同的图形。(与同学交流)
2.回答本页中的“小云朵”和“思考”问题(答案写在教材空白处) 3.说明全等形与全等三角形。
____________________________________________________________________ ____________________________________________________________________ 4.回答本节课中“思考2”问题,给我们带来启示是什么?
____________________________________________________________________ ____________________________________________________________________ 5. P3页中的“便签”说明什么?
__________________________
全等三角形教案
目录
第一篇:全等三角形教案第二篇:全等三角形的教案第三篇:八年级数学上册 11.1全等三角形的教案设计 人教新课标版第四篇:三角形全等的判定1教案第五篇:浙江省瞿溪华侨2014年中学八年级数学上册 2.8 直角三角形全等的判定教案 浙教版更多相关范文正文
第一篇:全等三角形教案
教学目标 :
1、知识目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等.
2、能力目标:
(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;
(2) 通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用公理证明两个三角形全(更多请搜索wWw.haOWORd.COM)等.
教学难点 :在较复杂的图形中,找出证明两个三角形全等的条件.
教学用具:直尺、微机
教学方法:自学辅导式
教学过程 :
1、公理的发现
(1)画图:(投影显示)
教师点拨,学生边学边画图.
(2)实验
让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)
这里
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
新人教八年级第十三章《全等三角形》测试题
《全等三角形》整章水平测试题
一、认认真真选,沉着应战! 1.下列命题中正确的是( )
A.全等三角形的高相等 B.全等三角形的中线相等
C.全等三角形的角平分线相等 D.全等三角形对应角的平分线相等 2. 下列各条件中,不能作出惟一三角形的是( )
A.已知两边和夹角 B.已知两角和夹边 C.已知两边和其中一边的对角 D.已知三边 4.下列各组条件中,能判定△ABC≌△DEF的是( ) A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周长= △DEF的周长
D.∠A=∠D,∠B=∠E,∠C=∠F
5.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC, 则∠BCM:∠BCN等于( )
A.1:2 B.1:3 C.2:3 D.1:4
6.如图, ∠AOB和一条定长线段A,在∠AOB内找一点P,使P 到OA、OB的距离都等于A,做法如下:(1)作OB的垂线NH, 使NH=A,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平 分线OP,与NM交于
三角形和四边形思维导图
三角形和四边形思维导图
三角形内角和等于 180°
三角形任意两边之和 大于第三边
等边三角形
等腰三角形
锐角三角形
边 不等边三角形
三角形
角
钝角三角形 直角三角形
认识三角形和 四边形
四边形 只有一组对边平行 的四边形 没有一组对边平行 的四边形 有两组对边分别平 行的四边形
梯形 平行四边形 长方形 正方形
直角梯形
等腰梯形
作三角形及利用三角形全等测距离
作三角形及利用三角形全等测距离
【知识要点】
1、根据简单图形书写作法
2、作一个三角形与已知三角形全等 3、利用三角形全等测距离
【典型例题】
已知两边和夹角作三角形:
1、已知三角形的两边及其夹角,求作这个三角形.
已知:线段a,c,∠α。
求作:ΔABC,使得BC= a,AB=c,∠ABC=∠α。 作法与过程:
(1)作一条线段BC=a,
(2)以B为顶点,BC为一边,作角∠DBC=∠a; (3)在射线BD上截取线段BA=c;
(4)连接AC,ΔABC就是所求作的三角形。 已知两角和夹边作三角形:
2、已知三角形的两角及其夹边,求作这个三角形.
已知:线段∠α,∠β,线段c 。
求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c。
作法:(1)作____________=∠α;
(2) 在射线______上截取线段_________=c; (3) 以______为顶点,以_________为一边,
作∠______=∠β,________交_______于 点_______.ΔABC就是所求作的三角形.
已知三边作三角形:
3、已知三角形的三边,求作这个三角形.
已知:线段a,b,c。
求作:ΔABC