二次函数20道题及答案
“二次函数20道题及答案”相关的资料有哪些?“二次函数20道题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数20道题及答案”相关范文大全或资料大全,欢迎大家分享。
中考二次函数压轴题及答案
二次函数压轴题精讲
1.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
(2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
第1页(共90页)
例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交
点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P
中考二次函数压轴题及答案
二次函数压轴题精讲
1.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
(2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
第1页(共90页)
例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交
点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P
中考二次函数压轴题及答案
二次函数压轴题精讲
1.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
(2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
第1页(共90页)
例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交
点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P
最全二次函数中考应用题及答案
二次函数中考应用题及答案
二、例题
例1、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。
(1)建立如图所示的直角坐标系,求抛物线的解析式;
(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?
简解:
(1)由于抛物线的顶点是 (0,3.5),故可设其解析式为y=ax2
+3.5。又由于抛物线过(1.5,
3.05),于是求得a=-0.2。∴抛物线的解析式为y=-0.2x2
+3.5。
(2)当x=-2.5时,y=2.25。∴球出手时,他距地面高度是2.25-1.8-0.25=0.20(米)。
评析:运用投球时球的运动轨迹、弹道轨迹、跳水时人体的运动轨迹,抛物线形桥孔等设计的二次函数应用问题屡见不鲜。解这类问题一般分为以下四个步骤: (1)建立适当的直角坐标系(若题目中给出,不用重建);
(2)根据给定的条件,找出抛物线上已知的点,并写出坐标;
(3)利用已知点的坐标,求出抛物线的解析式。①当已知三个点的坐标时,可用一般式
二次函数应用题及压轴题
二次函数应用题及压轴题
1.(2014?眉山)“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱. (1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元? (2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高? 2.(2014?台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.
(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;
(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本). ①求w关于x的函数关系式;
②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?
(3
课本23题二次函数
二次函数课本改编总汇
武汉市光谷实验中学九年级数学组 主讲:颜永洪
一、根据图象建模
23.1(九下P10例4)要在一个圆形广场中央修建一个音乐喷泉,在广场中央竖直安装一根水管,
在水管的顶端安一个喷水头,使喷出的抛物线水柱在与广场中央的水平距离为1m处达到最高,且最高为3m,水柱落地处离广场中央3m,建立如图所示的直角坐标系, y(1)求抛物线的解析式
(2)问水管应多长?
3(3)当音乐喷泉开始喷水时,在广场中央有一身高为1.5米的男孩未及时跑到喷泉外, 问该男孩离广场中央的距离m的范围为多少时,才不会淋湿衣裳。 O13
23.2(九下P10例4改)某公园在一个圆心角为1200的扇形OEF的草坪上的圆心O处竖一根垂直的柱子OA,在A处安装一个自动喷水装置,水流在各个方向上沿形状相同的抛物线落下,
10
且水柱恰好落在草坪的边缘,下图分别是主视图和俯视图,若OA= 米,喷出的水流在距O
3水平距离为2米的地方到达最高点B,且B距地面距离为6米, (1)建立如图所示的直角坐标系,求抛物线的解析式 (2)扇形草坪的半径OE的长
(3)若在△OEF中再造一个矩形花坛MNGH,使G,H在OE,OF上,M,N在EF上,问
二次函数压轴题之新定义问题(二)(讲义及答案)
二次函数压轴题之新定义问题(二)(讲义) 知识点睛
解决新定义问题时常考虑:
①回归新定义,给什么,用什么;将新定义与所给问题信息
结合分析转化;
②将新定义图形结构化、模型化,利用其相关特征、性质解
决问题.
精讲精练
1.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐
标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q的“相关矩形”的示意图.
(1)已知点A的坐标为(1,0).
①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,
求直线AC的表达式.
(2)⊙O的半径为2,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m 的取值范围.
2.【定义】我们定义:平面内到一个定点F 和一条定直线l (点
F 不在直线l 上)距离相等的点的集合叫做抛物线,其中点F 叫做抛物线的“焦点”,直线l 叫做抛物线的“准线”.如图1,点O 即为抛物线1y 的“焦点”,直线l :2y =-即为抛物线1y 的“准线”.可以发现“焦点”F 在抛物线的对称轴上.
【理解
中考二次函数应用题(含答案)
二次函数应用题
1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元?
(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?
2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
4.体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线
125y??x2?x?的一部分,根据关系式回答:
1233⑴ 该同学的出手最大高度是多少?
⑵ 铅球在运行过程中离地面的最大高度是多少? ⑶ 该同学的成绩是多少?
3、张
二次函数图像问题及答案(难题)
二次函数图像性质
1、二次函数y?ax?bx?c的图像如图所示,OA=OC,则下列结论: ①abc<0;②4ac?b2;③ac?b??1; ④2a?b?0;⑤OA?OB??y2c; aA-2⑥4a?2b?c?0。其中正确的有( ) A、2个 B、3个 C、4个 D、5个
2、抛物线y=ax2+bx+c的图象如图,OA=OC,则( ) (A) ac+1=b; (B) ab+1=c; (C)bc+1=a; (D)以上都不是
O1CBx第1题图 y C A O x 3,已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,给出以下结论:① a+b+c<0;② a-b+c<0;③ b+2a<0;④ abc>0 .其中所有正确结论的序号是( )
A. ③④ B. ②③ C. ①④ D. ①②③
y
O -11x
图2
4.如图是二次函数y=ax2+bx+c的图象的一部分;图象过点A(-3,0),对称轴为x=-1,
给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确的是________________.(填序号)
5.y=a
二次函数实际应用题
1.(10贵阳)某商场以每件50元的价格购进一种商品,销售中发现 这种商品每天的销售量m(件)与每件的销售价x(元) 满足一次函数,其图象如图所示.
(1)每天的销售数量m(件)与每件的销售价格x(元) 的函数表达式是 .
x)元
(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x
(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?
2.(10包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数
y kx b,且x 65时,y 55;
x 75时,y 45.
(1)求一次函数
y kx b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
3.( 08 河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为
(吨)时,所需的全部费用
,
(万元)与
满足关系式
,投入市场
后当年