椭圆的标准方程评课稿
“椭圆的标准方程评课稿”相关的资料有哪些?“椭圆的标准方程评课稿”相关的范文有哪些?怎么写?下面是小编为您精心整理的“椭圆的标准方程评课稿”相关范文大全或资料大全,欢迎大家分享。
椭圆的标准方程
中学数学 高中二年级上学期第6课
椭圆-1主讲人
官琪
北京市第九中学
如何研究椭圆
如何研究椭圆(1)由椭圆曲线求它的方程
如何研究椭圆(1)由椭圆曲线求它的方程 (2)利用方程研究椭圆的性质
实验:绘制椭圆
实验:绘制椭圆将一条没有弹性的细绳的两端 拉开一段距离,分别固定在图板上 不同的两点 处,并用笔尖拉 紧绳子,再移动笔尖一周,这时笔 尖画出的轨迹是什么图形呢?
F1
F2
实验思考
实验思考(1)如果调整细绳两端的相对位 置,细绳的长度不变,猜想轨迹会 发生怎样的变化?
实验思考(2)如果调整细绳的长度,细绳 两端的相对位置不变,猜想轨迹会 发生怎样的变化?
实验思考(3)细绳两端的距离与绳长等于 或大于绳长,画出的图形还是椭 圆吗?还能画出图形吗?
抛物线及其标准方程评课稿
尊敬的各位专家,领导,老师:
大家好,我是富锦三中数学教师康晓磊。刚才我们共同听取了**老师讲授的《抛物线及其标准方程》一课,下面由我对本节课进行评议,我将从教材分析、教学目标、教学方法、教学过程、教师教学基本功、教学效果六个方面进行评议。 一、教材分析
抛物线及其标准方程是新课标人教版高中数学选修2-1(1-1)第二章第四(三)节部分内容,是在学习了椭圆、双曲线之后进行学习的圆锥曲线。本节课,教师将导学案提前及时发给学生,学生在课前便能了解本节课的教学目标、重点、难点及教学内容,大大降低了授课难度。这种处理方式,充分体现了学生的主体地位,同时又能在课堂上节省时间,提高课堂效率。在重难点的处理上,教师结合导学案,通过小组合作探究活动突破难点,体现重点。以上的教材处理过程,体现出教师对教材的深刻理解,也诠释了用教材去教而不是教教材这一教学理念。
二、教学目标 (一)知识与技能
(1)掌握抛物线的定义、几何图形 (2)会推导抛物线的标准方程
(3)能够利用给定条件求抛物线的标准方程 (二)过程与方法 通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,并进一步感受坐标法及数形
椭圆及其标准方程
第一节 椭圆
1.椭圆的定义
(1) 第一定义:|PF1|?|PF2|?2a(2a?|F1F2|) (F1,F2为焦点,|F1F2|?2c为焦距) 注:①当2a=|F1F2|时,P点的轨迹是 .
②当2a<|F1F2|时,P点的轨迹不存在.
(2)第二定义:
|PF|d?e,(0?e?1)
注:第二定义中焦点与准线应对应
2.椭圆的标准方程(中心在原点,对称轴为坐标原点)(1) 焦点在x轴上,中心在原点的椭圆标准方程是:(2) 焦点在y轴上,中心在原点的椭圆标准方程是
yaxa2222?xbyb2222?1,其中( > >0,且a2? )
??1,其中a,b满足: .
说明:(1)焦点在x2,y2分母大的对应的坐标轴上; (2)a2?b2?c2及a,b,c的几何意义 (3)标准方程的统一形式:mx2?ny2?1(m?0,n?0,m?n)
适用于焦点位置未知的情形
?x?acos? (4)参数方程:??y?bsin?3.椭圆的几何性质(对(1) (2) (3) (4)
xa2
椭圆及其标准方程
高中数学· 选修1-1· 人教A版
2.1.1
椭圆及其标准方程
第二章
圆锥曲线与方程2.1 椭 圆
2.1.1 椭圆及其标准方程
预习导学
课堂讲义
当堂检测
预习导学
2.1.1
椭圆及其标准方程
[学习目标] 1 .了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过
程,椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.
预习导学
课堂讲义
当堂检测
预习导学
2.1.1
椭圆及其标准方程
[知识链接] 命题甲:动点P到两定点A、B的距离之和|PA|+|PB|=2a (a>0且a 为常数);命题乙:点 P的轨迹是椭圆,且A、B是椭圆的焦点,
则命题甲是命题乙的(A.充分不必要条件 C.充要条件 答案 B
)B.必要不充分条件 D.既不充分也不必要条件
预习导学
课堂讲义
当堂检测
预习导学
2.1.1
椭圆及其标准方程
解析 若P点的轨迹是椭圆,则一定有|PA|+|PB|=2a (a>0,且a为常数), 所以命题甲是命题乙的必要条件. 若|PA| +|PB|=2a (a>0,且 a为常数 ) ,不能推出 P点的轨迹是椭 圆.
这是因为:仅当2a>|AB|时,P点的轨迹是椭圆;而当2a=|AB|时,P点的轨迹是线段AB; 当2a<|AB|
椭圆及其标准方程说课稿
椭圆及其标准方程说课稿
崔晓宁
各位领导、各位老师:
晚上好!很荣幸能参加今晚的说课活动.我今晚说课的题目是《椭圆及其标准方程》。我将按照1、教材分析、2、教学目标分析、3、学情分析、4、教法学法分析、5、教学过程分析、6、教学反思、这6个环节对本节课进行说明。
首先是教材分析:
教材的地位和作用:椭圆定义及其标准方程是高中数学第八章《圆锥曲线方程》的内容,在这之前学生已经学习了坐标平面上直线和圆的方程,以及求简单曲线方程和利用曲线方程研究曲线几何性质的初步知识,在此基础上,将研究曲线的方法拓展到椭圆,为以后学习椭圆的几何性质及其它圆锥曲线做好准备。因此本节内容起到承上启下的作用,是本章的重点。另外,椭圆定义与方程的研究,使曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想,而这种思想,将贯穿整个高中阶段的数学学习。而且椭圆的知识在日常生活和科学技术方面都有着广泛的应用.
教学目标分析:
知识目标:理解椭圆的定义,掌握椭圆标准方程及推导
技能目标:能根据条件确定椭圆标准方程,并掌握用待定系数法求椭圆标准方程。
情感目标:鼓励学生积极、主动的参与教学的整个过程,激发其求知的欲望;培养学生勇于探索 、敢于创新的精神。体验数与形对立统一
《椭圆及其标准方程》正式说课稿
《椭圆及其标准方程》说课稿
今天我说课的题目是《椭圆及其标准方程》,内容选自人教版高二数学第八章第一节,本节课共分两个课时,我说的是第一课时.
下面我从六个方面来说说对这节课的分析和设计: 一、教学背景分析 二、教学目标设计 三、教法学法设计 四、教学媒体设计 五、教学过程设计 六、教学评价设计 一、教学背景分析 (一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.
(二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略.
(三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知
椭圆及其标准方程教案1
椭圆及其标准方程
第一课时
教学设计
数学与统计学院2010级 杨双喜
一、教材分析
《椭圆及其标准方程》是继学习圆以后,运用“曲线和方程”工具解决二次曲线的又一个实例,从知识上讲,它是对前面所学运用坐标法研究曲线几何性质的一次演练,同时又是进一步研究椭圆几何性质的基础,从方法上讲,它为后面研究双曲线、抛物线提供了基本模式和理论基础。从教材的编排上,椭圆的重要性犹为突出,有承上启下的作用,是本节、本章的重点。 二、学情分析
学习本节之前,学生已经学过直线和圆的方程,对直线和圆的方程的知识有了一定的了解和运用的经验,对用坐标法研究几何问题也有了初步的认识。因此,在老师的合理引导下,学生有独立研究有关点的轨迹问题和基础知识的能力,但学生学习解析几何的时间不长,程度也较浅,研究中可能遇到一些困难。另外学生的运算能力不够强,对有两个根号式子的化简较陌生,是学生学习的一个难点,需老师合理引导,学生加强合作。
三.教学目标: 1.知识与技能目标: ①理解椭圆的定义
②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力
2.过程与方法目标:
①经历椭圆
椭圆极其标准方程教学设计
椭圆极其标准方程教学设计
高中数学“椭圆及其标准方程”教学设计
教学设计思路:
以“嫦娥二号”引入新课,再以其轨迹引出椭圆的图形。以生活中实际的例子引入椭圆,增强学生的学习兴趣,使之领会到数学与生活密切相关。研究椭圆是要以圆做类比,以圆定义做基础,进而引出椭圆的定义,最后推到出椭圆的标准方程,学习者更容易吸收。 一、学习任务分析
椭圆是高中数学课本中重要的圆锥曲线之一,总共分两课时完成,第一课时是椭圆的定义与标准方程,第二课时是椭圆的集合性质,本节为第一课时。
本节课的主要任务就是认识椭圆,了解其定义,进而推导出标准方程。 1.教学重点:椭圆的定义和标准方程. 2.教学难点:椭圆标准方程的推导 二、学习者分析
学习者是高二的学生,对地球和其他卫星的运行轨迹已有初步了解,并知道运行轨迹是椭圆,以此引入椭圆的概念,就很容易的接受了,再者,初中已经学习过圆的定义,对于由“一个定点”演变成“两个定点”得到的图形——椭圆来说,也不是什么难事了。 三、教学目标
1.知识目标:掌握椭圆的定义及标准方程;根据条件写出椭圆标准方程;熟悉求曲线方程的
一般方法.
2.能力目标:提高动手能力、合作学习的能力、运用知识解决问题的能力. 3.情感目标:激发学生的兴趣;提高审美情趣;
椭圆的标准方程经典例题和练习
椭圆标准方程精制课件
椭圆的标准方程
椭圆标准方程精制课件
问题引入问题1、决定椭圆形状大小的量有 a,b,c,e它之间有什么关系呢? 1、a2+b2=c2c 2、e= a
b 3、e2=1 2 a
椭圆标准方程精制课件
问题2、已知a,b,c,e中的两个 如何求椭圆的标准方程呢?探究1、已知椭圆的长轴长为4,半焦距 为1,求椭圆的标准方程。4 探究2、已知椭圆的离心率为 5 ,短轴长
为6,求椭圆的标准方程。
椭圆标准方程精制课件
小结 概念有 方法有
椭圆标准方程精制课件
1、已知椭圆的两个焦点坐标分别是(-4,0)、
(4,0),椭圆上一点P到两焦点的距离之和等于10,求椭圆的标准方程。
椭圆标准方程精制课件
2、 已知椭圆 G 的中心在坐标原点, 长轴在 x 轴上,3 离心率为 ,且 G 上一点到 G 的两个焦点的距 2
离之和为 12,则椭圆 G 的方程是_________
椭圆标准方程精制课件
椭圆标准方程的双基训练
椭圆标准方程精制课件
轨迹问题
例 1、已知△ABC 的周长是 18,A(-4,0), B(4,0) ,求点 C 的轨迹方程。yC
A(-4,0)
o
B(4,0)
x
椭圆标准方程精制课件
轨迹问题
例 2、 已知圆 F1 : ( x 1) y 16
椭圆标准方程及其几何性质
《椭圆标准方程及其几何性质》
一:椭圆的简单几何性质
1、焦点F1(0,?4),F2(0,4),2a?10; 则椭圆的标准方程: 2、焦点在x轴上,a:b?2:1,c?6;则椭圆的标准方程:
3、a?c?1,b?5;则椭圆的标准方程: 4、焦距为6,a?b?1;则椭圆的标准方程:
225、焦点在y轴上,a?b?5,且过点(?2,0);则椭圆的标准方程:
6、椭圆经过两点(?35,),(223,5).则椭圆的标准方程:
7、求过点P(6,1),Q(?3,?2)两点的椭圆的标准方程;
8、求和椭圆9x?4y?36有共同的焦点,且经过点(2,?3)的椭圆方程.
9、两个焦点的坐标分别是(0,?2)、(0,2),并且椭圆经过点(? 10、椭圆
x22235 ,).则椭圆的标准方程:
22162?y29?1的焦距是 ,焦点坐标为 ,若CD为过左焦点F1的弦,则
?F2CD的周长为 .
11、方程4x?ky?