中考二次函数和一次函数的综合题
“中考二次函数和一次函数的综合题”相关的资料有哪些?“中考二次函数和一次函数的综合题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“中考二次函数和一次函数的综合题”相关范文大全或资料大全,欢迎大家分享。
综合题:一次函数 二次函数 反比例函数中考综合题复习
第一部分:一次函数
考点归纳:
一次函数:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,
一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。 ☆A与B成正比例?A=kB(k≠0)
直线位置与k,b的关系:
(1)k>0直线向上的方向与x轴的正方向所形成的夹角为锐角; (2)k<0直线向上的方向与x轴的正方向所形成的夹角为钝角; (3)b>0直线与y轴交点在x轴的上方; (4)b=0直线过原点;
(5)b<0直线与y轴交点在x轴的下方;
平移
1x向上平移1个单位,再向右平移1个单位得到直线 。 332, 直线y??x?1向下平移2个单位,再向左平移1个单位得到直线________ 41,直线y?方法:直线y=kx+b,平移不改变斜率k,则将平移后的点代入解析式求出b即可。
直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
练习:直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)
在直线n上,则a=________
一次函数和几何综合题
一次函数与几何图形综合专题讲座
思想方法小结 : (1)函数方法.
函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.
(2)数形结合法.
数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.
知识规律小结 :
(1)常数k,b对直线y=kx+b(k≠0)位置的影响. ①当b>0时,直线与y轴的正半轴相交; 当b=0时,直线经过原点;
当b﹤0时,直线与y轴的负半轴相交. ②当k,b异号时,即-当b=0时,即-b>0时,直线与x轴正半轴相交; kb=0时,直线经过原点; kb当k,b同号时,即-﹤0时,直线与x轴负半轴相交.
k③当k>O,b>O时,图象经过第一、二、三象限; 当k>0,b=0时,图象经过第一、三象限; 当b>O,b<O时,图象经过第一、三、四象限; 当k﹤O,b>0时,图象经过第一、二、四象限; 当k﹤O,b=0时,图象经过第二、四象限; 当b<O,b<O时,图象经过第二、三、四象限. (2)直线y=kx+b(k≠0)与直线y=
一次函数几何综合题
一次函数几何综合题
1.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半
2
轴上,OA、OB的长分别是一元二次方程x﹣7x+12=0的两个根(OA>OB). (1)求点D的坐标.
(2)求直线BC的解析式.
(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
【答案】 【解析】 试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可; (2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;
(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C的对称点时,△PCD为等腰三角形,然后求解即可.
2
试题解析:(1)x﹣7x+12=0, 解得x1=3,x2=4, ∵OA>OB, ∴OA=4,OB=3,
过D作DE⊥
初二一次函数综合题
1.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足(a?2)2?b?4?0 (1)、求直线AB的解析式;
(2)、若点M为直线y?mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值;
2.如图l,y=-x+6与坐标轴交于A、B两点,点C在x轴负半轴上,S△OBC=
1S△AOB. 3(1)、求直线BC的解析式;
(2)、直线EF:y=kx-k交AB于E点,与x轴交于D点,交BC的延长线于点F,且S△BED=S△FBD,求k的值;
3、如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴的负半轴上,∠CAO=30°,OA=4. (1)、求点C的坐标; (2)、如图,将△ACB绕点C按顺时针方向旋转30°到△A′CB′的位置,其中A’C交直线OA于点E,A’B’分别交直线OA、CA于点F、G,则除△A′B′C≌△AOC外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)
(3)、在(2)的基础上,将△A′CB′绕点C按顺时针方向继续旋转,当△COE的面积为CE的函数表达式.
第 1 页 共 7 页
一次函数和几何综合题(精选版)
1、 直线y??2x?2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC?OB (1)求AC的解析式;
(2)在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q,试探究BP与PQ的
数量关系,并证明你的结论。
(3)在(2)的前提下,作PM⊥AC于M,BP交AC于N,下面两个结论:①
的值不变;②
MQ?ACPM
MQ?AC的值不变,期中只有一个正确结论,请选择并加以证明。
PMy
Q B M o C
2、如图①所示,直线L:y?mx?5m与x轴负半轴、y轴正半轴分别交于A、B两点。 (1)当OA=OB时,试确定直线L的解析式;
(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B
两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,BN=3,求MN的长。 (3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直
角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③。问:当点B在 y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。
A P x
yyBNxAOxEyPBOBAOFAMx
图①
一次函数和几何综合题(精选版)
1、 直线y??2x?2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC?OB (1)求AC的解析式;
(2)在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q,试探究BP与PQ的
数量关系,并证明你的结论。
(3)在(2)的前提下,作PM⊥AC于M,BP交AC于N,下面两个结论:①
的值不变;②
MQ?ACPM
MQ?AC的值不变,期中只有一个正确结论,请选择并加以证明。
PMy
Q B M o C
2、如图①所示,直线L:y?mx?5m与x轴负半轴、y轴正半轴分别交于A、B两点。 (1)当OA=OB时,试确定直线L的解析式;
(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B
两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,BN=3,求MN的长。 (3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直
角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③。问:当点B在 y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。
A P x
yyBNxAOxEyPBOBAOFAMx
图①
次函数、反比例函数、二次函数的综合题
一次函数、反比例函数、二次函数的综合题
1.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为________.
2.已知函数:(1)图象不经过第二象限;(2)图象经过(2,-5),请你写出一个同时满足(1)和(2)的
函数_________________
3.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的
长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则
菜园的面积y (单位:米2)与x (单位:米)的函数关
系式为 .(不要求写出自变量x 的取值范围)
4.当路程s 一定时,速度v 与时间t 之间的函数关系是( ) A .正比例函数 B .反比例函数 C .一次函数 D .二次函数
5.函数2y kx =-与k y x =
(k ≠0)在同一坐标系内的图象可能是( )
1.点A ()o y x ,0在函数c bx ax y ++=2的图像上.则有 .
2. 求函数b kx y +=与x 轴的交点横坐标,即令 ,解方程 ;
与y 轴的交点纵坐标,即令 ,求y 值
3. 求一次函数(
二次函数综合题老师
二次函数综合
二次函数
一、选择题
1、(2007天津市)已知二次函数y ax2 bx c(a 0)的图象如图所示,有下列5个结论:① abc 0;② b a c;③ 4a 2b c 0;④ ⑤ a b m(am b),(m 1的实数)其中正确的结论有( )2c 3b;B
A. 2个 B. 3个 C. 4个 D. 5个
2、(2007南充)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是( ).B (A)②④ (B)①④ (C)②③ (D)①③ 3、(2007广州市)二次函数y x 2x 1与x轴的交点个数是( )B A.0 B.1 C.2 D.3 4、(2007云南双柏县)在同一坐标系中一次函数y ax b和二次函数
y ax bx
2
2
的图象可能为( )A
A
5、(2007四川资阳)已知二次函数y ax2 bx c(a≠0)的图象开口向上,并经过点(-1,
2),(1,0) . 下列结论正确的是( )D
A. 当x>0时,函数值y
二次函数综合题老师
二次函数综合
二次函数
一、选择题
1、(2007天津市)已知二次函数y ax2 bx c(a 0)的图象如图所示,有下列5个结论:① abc 0;② b a c;③ 4a 2b c 0;④ ⑤ a b m(am b),(m 1的实数)其中正确的结论有( )2c 3b;B
A. 2个 B. 3个 C. 4个 D. 5个
2、(2007南充)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是( ).B (A)②④ (B)①④ (C)②③ (D)①③ 3、(2007广州市)二次函数y x 2x 1与x轴的交点个数是( )B A.0 B.1 C.2 D.3 4、(2007云南双柏县)在同一坐标系中一次函数y ax b和二次函数
y ax bx
2
2
的图象可能为( )A
A
5、(2007四川资阳)已知二次函数y ax2 bx c(a≠0)的图象开口向上,并经过点(-1,
2),(1,0) . 下列结论正确的是( )D
A. 当x>0时,函数值y
一次函数图像信息综合题(含答案)
一.选择题(共4小题) 1.(2014?黔西南州)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )
A.①②③ B.仅有①② C.仅有①③ D.仅有②③ 2.(2015?鄂州)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论: ①A,B两城相距300千米; ②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后2.5小时追上甲车; ④当甲、乙两车相距50千米时,t=或其中正确的结论有( )
.
A.1个 B.2个 C.3个 D.4个 3.(2015?连云港)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )
A.第24天的销