变中抓不变的思想方法

“变中抓不变的思想方法”相关的资料有哪些?“变中抓不变的思想方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“变中抓不变的思想方法”相关范文大全或资料大全,欢迎大家分享。

小学数学教学中渗透“变与不变”思想方法的点滴思考

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

龙源期刊网 http://www.qikan.com.cn

小学数学教学中渗透“变与不变”思想方法的点滴思考

作者:张朝明

来源:《教师·下》2014年第07期

《义务教育数学课程标准(2011版)》关于课程的总目标中指出,要让学生“学会独立思考,体会数学的基本思想和思维方式”。数学思想是对数学知识、方法、规律的一种本质认识;数学方法是解决数学问题的策略和程序,是数学思想的具体反映。人们通常将数学思想与方法看成一个整体概念——数学思想方法。在变化中寻找不变的量是数学的一个重要思想方法 ,它广泛存在于小学数学之中。下面具体谈谈我在小学数学教学中是怎样渗透“变与不变”这一思想方法的。

一、在“变与不变”中揭示概念、寻找规律、归纳性质

在小学数学教学中,简单枚举推理(也叫做不完全归纳推理)是运用得较多的一种推理方法。即从一些个别或者特殊事物出发,概括出一般性概念、规律或性质。很多数学结论,都是先通过归纳推理得到结果,再辅以演绎推理加以证明。比如,费马达定理、庞加莱猜想等,几百年前就发现了“结论”,直到20世纪末21世纪初才被数学界证明。所以很多数学家都认为,数学结论是看出来的,而不是证出来的,看出

变中有不变思想解题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

变中有不变专题

3、电场中的时间守恒

例题:A、B表示真空中相距为d的平行金属板,极板长为L,加上电压后,其间的电场可视为匀强电场,在t?0时,将图13所示的方形波加在A、B上,且UA?U0,UB?0,此时恰有一带电微粒沿两板中央飞入电场。微粒质量为m(不计重力),带电量为q,速度大小为v,离开电场时恰能平行于金属板飞出,求(1)所加交变电压U0的取值范围,(2)所加电压的频率应满足什么条件?

U

A U0 m v t q

-U0 B 图13

分析:若要粒子恰能平行于金属板方向飞出,就要粒子在离开电场时只有平行于金属板的速度,而垂直于金属板方向的速度为零。带电粒子在进入电场以后只受电场力作用,但电场力是周期性地变化的,在这种周期性电场力的作用下,带电粒子的运动可以分为这样两个分运动:垂直于电场方向的匀速直线运动;平行于电场方向的匀变速直线运动(加速度大小不变)。平行于电场方向的运动是比较复杂的:第一个半周内,粒子做初速度为零的匀加速运动,第二个半周内,做匀减速直线运动,末速度变为零;第三、四个半周期内的运动依次重复第一、二两个半周期内的运动。由粒子的运动情况分析可知,要使粒子能平行于金属板飞出,必须满足二个条件:一是粒子

浅析数学思想方法在教学中的渗透

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

浅析数学思想方法在教学中的渗透

四川省成都市新都一中 陈 健

摘要:中学数学的课程内容是由具体的数学知识与数学思想方法组成的有机整体,现行数学教材的编排是沿知识的纵向展开的,数学思想方法只是蕴涵在数学知识的体系之中,没有明确的揭示和总结。这样就产生了如何处理数学思想方法教学的问题。数学思想方法的构建有三个阶段:潜意识阶段、明朗和形成阶段、深化阶段。教学应以贯彻渗透性原则为主线,结合落实反复性、系统性和明确性的原则.它们相互联系,相辅相

成,共同构成数学思想方法教学的指导思想。

关键词:数学思想、数学方法、渗透、构建 一、数学思想方法教学与能力的关系

思想方法就是客观存在反映在人的意识中经过思维活动而产生的结果,它是从大量的思维活动中获得的产物,经过反复提炼和实践,一再被证明为正确、可以反复被应用到新的思维活动中,并产生出新的结果。数学思想方法,就是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识。所以,数学思想是对数学知识的本质认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导

论文:数学思想方法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

数学思想方法

河南省虞城县李老家乡第二初级中学;高华增

数学思想方法一般是指人们在数学的发生、形成、发展过程中总结概括出来的数学规律的本质认识,是利用数学知识去解决问题的思维策略和指导思想,它为数学知识的学习和运用提供了方向,是解决数学问题的“向导”,数学思想的产生并作用于数学学习的整个过程中,尤其是在解决复杂的综合题时,数学思想的合理运用起着关键性的决定作用,数学思想方法是数学思想的具体体现,不仅是学习和运用数学知识的解决数学问题应具备的、最基本的思想方法.而且是新课标改革的方向和中考试题解题特征

常见的数学思想方法有:化归思想方法、数形结合思想方法、分类讨论思想方法、数学建模思想方法、方程思想方法、函数思想方法、整体思想方法,对此类问题的突破,方法具体如下:

类型一:化归思想方法: 重难点突破:解决问题的基本思想就是化

未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把实际问题数学化,不同的数学问题相互转化,也体现了把不易解决的问题转化为有章可循,容易解决的问题的思想

【例1】 如下图中每个阴影部分是以多边形各顶点为圆心,1为半径

的扇形,并且所有多边形的每条边都大于2,则第n个多边形中,所有扇形面积之和是______.(结果保留π)

小学数学思想方法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

小学毕业生数学学习材料(二)

小学数学思想方法

小学数学是一门基础学科。小学数学中不仅包括了大量的数学基础知识,而且在学习和运用这些数学知识的过程中,还以潜移默化的方式渗透了一些重要的数学思想方法。本讲义从较高的视点出发,对已有的关于数学思想方法零散而模糊的感性认识,进行科学地、系统地概括,结合一些经过精选的数学竞赛题目,进行深入细致的讲解,并且安排了必要的和适量的练习,力求通过学习,对一些常用的数学思想方法和技巧能够明确认识,融会贯通,以提高数学思维能力和解题能力,为更好地为适应初中数学的学习打下良好的基础。

第一讲 从简单情况找规律

当一个问题非常复杂时,首先就要想到,其中是否隐藏着某种规律,如果能找到这种规律,问题就会迎刃而解。探索规律,往往要利用已有的知识和经验,从简单的、熟悉的地方开始,从粗略的估计开始,同时注意极端的情况,如最大、最小等。

例1 1995个7连乘,积的个位数字是多少?(北京市“迎春杯”数学竞赛题)

解:71=7,个位数字是7;72=49,积的个位数字是9;73=343,积的个位数字是3;74=2401,积的个位数字是1;75=16807,积的个位数字是7。 观察发现,随着因数的增加,积的个位数字按“7

小学数学思想方法的梳理

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

小学数学思想方法的梳理(一) 王永春(课程教材研究所)

数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。

《数学课程标准》在总体目标中明确提出:“学生能获得适应未来的社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。”这一总体目标贯穿于小学和初中,这充分说明了数学思想方法的重要性。在小学阶段有意识地向学生渗透一些基本的数学思想方法可以加深学生对数学概念、公式、法则、定律的理解,提高学生解决问题的能力和思维能力,也是小学数学进行素质教育的真正内涵之所在。同时,也能为初中数学思想方法的学习打下较好的基础。在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一一对应思想、模型思想、数性结合思想、演绎推理思想、变换思想、统计与概率思想等等。

为了使广大小学数学教师在教学中能很好地渗透

浅谈数学教学中渗透数学思想方法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

浅谈数学教学中渗透数学思想方法

小学数学教学中包含着许多基本的数学思想方法,如对应、分类、类比、转化、化归、假设、符号化、数形结合等。在小学数学教学中有意识地渗透一些基本的数学思想方法,不仅能使学生感悟数学的美丽,感知数学的价值,学会用数学思想和方法思考和解决问题,还可以把学生知识的学习、能力的培养、智力的发展有机地结合起来,这也符合课程标准的思想。那么如何在教学中渗透一些基本的数学思想方法呢?本文结合教学谈谈自己的一些看法。

1 更新教育理念,充分挖掘教材中涉及的数学思想方法

数学思想方法隐含于数学学习活动的每一个环节,教师作为引导者和组织者,首先要更新自己的教育理念,要具备数学思想方法的基本知识和理论,要有渗透数学思想方法的主观意识和自觉性,充分挖掘教材和问题解决中所蕴含的数学思想方法,有目的、有计划、有层次的、循序渐进地渗透。如函数思想,小学数学中低段,就通过填数图等形式,将函数思想渗透在许多例题和习题之中; 在中高段教材中出现的几何图形的面积公式和体积公式,实际上就是变量之间的函数关系的解析法表示;又如,教材中在认数、数的计算、最大公约数和最小公倍数等教学中都渗透了集合的思想;在平行四边形、三角形、梯形、圆形等图形的面积计算公式的推导

浅谈数学教学中渗透数学思想方法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

浅谈数学教学中渗透数学思想方法

小学数学教学中包含着许多基本的数学思想方法,如对应、分类、类比、转化、化归、假设、符号化、数形结合等。在小学数学教学中有意识地渗透一些基本的数学思想方法,不仅能使学生感悟数学的美丽,感知数学的价值,学会用数学思想和方法思考和解决问题,还可以把学生知识的学习、能力的培养、智力的发展有机地结合起来,这也符合课程标准的思想。那么如何在教学中渗透一些基本的数学思想方法呢?本文结合教学谈谈自己的一些看法。

1 更新教育理念,充分挖掘教材中涉及的数学思想方法

数学思想方法隐含于数学学习活动的每一个环节,教师作为引导者和组织者,首先要更新自己的教育理念,要具备数学思想方法的基本知识和理论,要有渗透数学思想方法的主观意识和自觉性,充分挖掘教材和问题解决中所蕴含的数学思想方法,有目的、有计划、有层次的、循序渐进地渗透。如函数思想,小学数学中低段,就通过填数图等形式,将函数思想渗透在许多例题和习题之中; 在中高段教材中出现的几何图形的面积公式和体积公式,实际上就是变量之间的函数关系的解析法表示;又如,教材中在认数、数的计算、最大公约数和最小公倍数等教学中都渗透了集合的思想;在平行四边形、三角形、梯形、圆形等图形的面积计算公式的推导

数学思想方法在初中数学教学中的渗透

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

数学思想方法在初中数学教学中的渗透 一、渗透的必要性

数学教学中突出数学思想方法,是当代数学教育的必然要求, 也是数学素质教育的重要体现。在初中数学教学中,除要加强基础知识与基本技能的训练外,还要注重数学思想方法的渗透和灌输,相对于数学知识而言,数学思想方法的呈现形式是隐蔽的,学生难以独立地从课本中获得,这就要求教师在教学中要适时地对数学思想方法予以渗透。

1. 从教学任务看。初中数学教学不仅要向学生传授数学知识,还要帮助学生掌握好基础知识和基本技能,发展学生的智力, 培养学生的能力和非智力因素。从根本上讲,初中数学教学的主要任务之一是全面提高学生的数学素质,而加强数学思想方法教学就是增强学生数学观念,形成良好的数学素质的重要措施之一。

2. 从学习目的看。初中数学教学以提高学生素质,培养建设人才为目的。培养学生应用数学的意识和能力,运用所学知识去解决实际问题,用数学的观点或思维方式思考问题、认识问题和解决问题是数学教育的核心。解决数学问题是数学教育的中心课题,问题能否科学解决的关键在于是否找到合适的解题思想。因此,初中数学教学过程中渗透数学思想方法,是培养学生分析问题、解决问题能力的重要措施,也是提

第21 讲 数与式中的思想方法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

第21讲 数与式中的思想方法

一、学习目标

1.获得知识技能和一些数学学习的基本思想;

2.建立数学思想,掌握思想方法,可以在解题时,寻求出已知和未知的联系,提高分析问题的能力,从而形成解决问题的能力.

考情分析

数学的学习核心是思想方法的学习,数学题海浩瀚无边,问题又可变式发散,所以习题就千千万万,但是蕴涵在问题中的数学思想方法总是永恒不变的,它是数学的精髓,是解决问题的有效手段,是中考考查的重点.

二、基础知识·轻松学

1.整体思想运算简

就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.

【精讲】整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式中,整体思想有很好的应用.

2.分类讨论难化易

分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.

【精讲】分类的原则:(1)分类中的每一部分是相互独立的;(2)一