时间序列上机作业

“时间序列上机作业”相关的资料有哪些?“时间序列上机作业”相关的范文有哪些?怎么写?下面是小编为您精心整理的“时间序列上机作业”相关范文大全或资料大全,欢迎大家分享。

时间序列课程作业

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

时间序列分析课程大作业

专业: 学号: 姓名:

江苏省第三产业生产总值的研究—基于ARIMA模型分析

【摘要】

本论文分析江苏省第三产业生产总值数据,利用金融统计方法来建立模型,对江苏省经济进行分析和预测。首先,根据1978-2011年江苏省第三产业生产总值的数据绘制时间序列图,观察序列特征。然后,通过自然对数变换将近似指数上升的数据转化为近似直线上升的数据,在单位根检验的基础上结合样本自相关系数和样本偏相关系数的特征初步建立合适的ARIMA模型,并对建立的模型进行白噪声检验和参数的T检验。最后,根据T检验、白噪声检验的结果,结合AIC信息准则对模型进行优选,并根据最终确定的模型对2012-2017年江苏省第三产业生产总值进行预测,从而对江苏省经济的分析和预测。 一、引言:

近几年来,江苏省作为我国经济大省,经济发展面临着前所未有的机遇和挑战。随着科技和文化的发展,第三产业对经济发展的贡献和作用越来越大。加快发展第三产业,有利于江苏省经济结构调整和产业升级,有利于推进其现代化进程,有利于扩大就业和提高人民生活质量。对全省经济发展的局部协调和宏观调控,都不能忽视第三产业在经济发展中所起的作用。因此,研究江苏省第三产业生产总值数据,通过建立合适的

时间序列作业

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

习题2.3

1.考虑系列{1,2,…,20}: (1) 判断该系列是否平稳。

(2) 计算该序列的样本自相关系数(k=1,2,…,6)。 (3) 绘制该样本自相关图,并解释该图形。 解:(1)绘制该序列的时序图;

平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界,但是该时序图显示系列并不平稳,呈现明显的递增趋势,所以一定不是平稳序列。

(2)

分析上图得;?1=0.850 ?2=0.702 ?3=0.556 ?4=0.415 ?5=0.280 ?6=0.153

(3)考察该序列的自相关图,进一步检验该序列的平稳性。

从图中我们发现序列的自相关系数递减到零的速度相当缓慢,在很长的延迟时期里,自相关系数一直为正,而后又一直为负,在自相关图中显示三角对称性,这是具有单调趋势的非平稳序列的一种自相关图形式。该序列并不平稳。

同时,由于Q检验的P值都非常小,所以有很大的把握,断定该序列属于非白噪声序列。

2、1975-1980年夏威夷岛莫纳罗亚火山(Mauna Loa)每月释放的CO2数据(单位:ppm)如表2-7所示(行数据)。 表2-7:

(1) 绘制该序列的时序图,并判断该序列是否平稳。 (2

时间序列分析上机操作题

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

20.1971年9月—1993年6月澳大利亚季度常住人口变动(单位:千人)情况如下表。 63.2 49.9 49.5 35.8 39.5 47.6 51.2 67.6 45.5 59.4 58.6 79.4 58.5 170 43.4 67.9 45.3 59.9 28.4 49.8 37.3 60.8 62.5 44.5 51.6 62.1 59.9 65.2 -47.4 42.7 55.8 48.1 30.6 32.9 48.8 39.2 67 55.1 48 51.4 64 83.4 69.5 62.2 58.4 49.5 61.7 30.4 44.1 29 47.6 48.9 49.6 47.9 60.9 60.3 75.4 59.1 60 34.4 50.2 55.2 33.8 45.5 37.3 43.9 65.4 57.3 49.1 60.9 64.6 80.2 21.5 33.1 55.4 53.1 42.1 36.6 34.2 49 65.4 47.3 48.8 55.8 71 55.9 62.5 35.3 问题:(1)判断该序列的平稳性与纯随机性。 (2)选择适当模型拟合该序列的发展。

(3)绘制该

时间序列第四次上机实验

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

时间序列第四次上机作业

学号:Pb09204072 姓名:黄日茜

一、实验目的

理解经济时间序列之间的理论关系,并学会用统计方法验证他们之间的关系。学会验证时间序列存在的不平稳性,掌握ADF检验平稳性的方法。认识不平稳的序列容易导致虚假回归问题,掌握为解决虚假回归问题引出的协整检验,协整的概念和具体的协整检验过程。协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。

二、基本概念

设随机向量Xt中所含分量均为d阶单整,记为Xt?I(d)。如果存在一个非零向量

β,使得随机向量Yt?βXt~I?d?b?,b?0,则称随机向量Xt具有d,b阶协整关系,

记为Xt?CI(d,b),向量β被称为协整向量。特别地,yt和xt为随机变量,并且yt,

xt~I(1),当?t?yt?(?0??1xt)~I(0),即yt和xt的线性组合与I(0)变量有相同的统计

性质,则称yt和xt是协整的,??0,?1?称为协整系数。更一般地,如果一些I(1)变量的线性组合是I(0),那么我们就称这些变量是协整的。

由于经济领域中大多数时间序列是非平稳的,若以平稳为假设前提直接用传统的计量估计方法和普通最小二乘法进行估计,则所得的估计结

时间序列测验3解答 北师珠 时间序列

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

时间序列分析 教案

第5、6章 测试题

1. 时间序列{xt}的d阶差分实质上是一个d阶自回归过程, 则?xt?(1?B)xt?

ddii(?1)C?dxt?i ; i?0d2. 假设线性非平稳序列{xt}形如:xt?1?2t?at,

其中E(at)?0,Var(at)??2,Cov(at,at-1)?0,?t?1,

则?xt?xt?xt?1?2?at?at?1,?2xt??xt??xt?1?at?2at?1?at?2; 并说明为何说?2xt为过差分?

因为1阶和2阶差分后,序列均平稳,但Var(?xt)?Var(at?at?1)?2?2, 而Var(?2xt)?Var(at?2at?1?at?2)?6?,2阶差分后的方差大,过差分。 2

?1??1B)?xt?((1??1B??2B2)?t?3. 形如:?E(?t)?0,Var(?t)???2,E(?t?s)?0,s?t的模型,

?Ex??0,?s?t?st简记为 ARIMA(1,1,2) 模型,并说明此模型的平稳性。 此为不平稳模型。

4. 模型ARIMA(0,1,0)称为 随机游走 模型, 其序列的方差 Var(xt)?Var(x0??t??t?

时间序列测验2解答 北师珠 时间序列

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

时间序列分析 教案

测试2 解答 (第三、四章)

-11. 设{xt}为一时间序列,且?xt?xt?xt-1,?pxt??p( ?xt),?kxt?xt?xt-k,2?? 。 Bxt?xt-1,记?(??(B)xt, 则?(B)3?xt)2?(1?B3)(1?B)解:根据k步差分和p阶差分与延迟算子之间的关系,得?(B)。

2. 已知AR(1)模型为:xt?0.7xt-1??t,?t~WN(0,??2)。 求: E(xt),Var(xt),?2和?22。

解:(1) 由平稳序列E(xt)?E(xt-1)和E(?t)?0,得E(xt)?0 或 ???01??1????p?0 P. 47 (??0?0)(2) Var(xt)?0.72Var(xt?1)?Var(?t)?0.49Var(xt)???2

1?0.490.51k(3) AR(1)模型?k??1(k?0),?2??12?0.72?0.49 P. 50 (4) AR(1)模型偏自相关系数截尾: ?22?0 P. 54-55。

3. 分别用特征根判别法和平稳域判别法检验下列四个AR模型的平稳性。

时间序列二

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

应用时间序列分析

实 验 报 告 二

学生姓名 张亚平 学 号 20091315030 院 系 数学与统计学院 专 业 统计学 指导教师 尚林

二O一二年三月三十日

应用时间序列分析第二次实验报告

实验题目1

18 某地区连续74年的谷物产量(单位:千吨)如表3-21所示(具体数据见课本102页表-21)

(1)判断该序列的平稳性与纯随机性。 (2)选择适当模型拟合该序列的发展。

(3)利用拟合模型,预测该地区未来5年的谷物产量。 实验步骤1

(1) 根据题目所给数据得到了样本的自相关序列图,和纯随机性检验结果如下所示。

样本自相关图显示延迟3阶以后,自相关系数都落在2倍标准差范围内,而且样本自相关系数向零衰减的速度非常快,延迟6阶以后自相关系数即在零值附近波动,这是一个典型的短期相关的样本自相关图。由时序图和样本自相关图的性质可知该序列平稳。

由纯随机性检验结果可知,在各阶延迟下LB检验统计量的P值都非常小,所以我们可以认定该序列属于非白噪声序列。

(2) 为了找到合适的模型来拟合模型的发展,首先进行相对最优定阶得到结果如下。

《时间序列分析》讲义

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

第1章 差分方程和滞后算子

第一节 差分方程

一.一阶差分方程

假定t期的y(输出变量)和另一个变量w(输入变量)和前一期的y之间存在如下动态方程:

yt??yt?1?w (1)

则此方程为一阶线性差分方程,这里假定w为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:

mt?0.27?0.72mt?1?0.19It?0.045rbt?0.019rct

wt?0.27?0.19It?0.045rbt?0.019rct

其中mt为货币量,It为真实收入,rbt为银行账户利率,rct为商业票据利率。 1)用递归替代法解差分方程 根据方程(1),可以得到

012?ty0??y?1?w0y1??y0?w1y2??y1?w2 (2) ?yt??yt?1?wt如果我们知道t??1期的初始值y?1和w的各期值,则可以通过动态系统得到任何一个时期的值。即

yt??t?1y?1??tw0??t?1w1?....?wt (3)

这个过程称为差分方程的

时间序列平滑预测

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

实验3:时间序列平滑预测

3.1实验目的

1、了解移动平均法和指数平滑法的基本概念,基本原理;

2、掌握一次移动平均法,二次移动平均法,单指数平滑,双指数平滑和霍尔特指数平滑法预测模型形式,适用条件及内在机理;

3、掌握利用Excel软件实现一次移动平均法,二次移动平均法操作步骤; 4、掌握利用Eviews软件实现单指数平滑,双指数平滑和霍尔特指数平滑法预测的操作流程。

3.2实验原理

3.2.1移动平均法

移动平均法是根据一段时间序列的样本资料、逐项推移,依次计算包含一定项数的序时平均数,来预测序列趋势的一种平滑方法。它是最简单的自适应预测模型,主要包括一次移动平均和二次移动平均两种方法。

(一)一次移动平均法

一次移动平均法又称简单移动平均法,它是根据序列特征,计算一定项数的算术平均数作为序列下一期的预测值,这种方法随着时间的推移逐渐纳入新的数据同时去掉历史数据。

(1)计算公式:设时间序列为:x1,x2,?,xt一次移动平均的计算公式为:

1St?(xt?xt?1???xt?n?1)

n式中:St为第t期移动平均数;n为移动平均的项数。公式表明时间t每向前移动一个时期,一次移动平均便增加一个新近数据,去掉一个远期数据,得到

时间序列建模分析

标签:文库时间:2025-03-16
【bwwdw.com - 博文网】

1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型

时间序列建模分析 及EVIEWS应用

1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型

目录1、ARIMA模型1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例

2、季节时间序列模型2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型

1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型

时间序列的预处理:拿到一个时间序列后,首先要对它的平 稳性和纯随机性进行检