单因素重复测量设计的方差分析
“单因素重复测量设计的方差分析”相关的资料有哪些?“单因素重复测量设计的方差分析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“单因素重复测量设计的方差分析”相关范文大全或资料大全,欢迎大家分享。
重复测量设计的方差分析spss例析
重复测量的方差分析
重复测量方差分析的基本概述:被试对象在接受不同处理后,对同一因变量(测试指标)在不同时点上进行多次测量所得的资料,称为重复测量资料。这里的重复并不是单一的反复,而是在多个时点上的测量。
这种资料的特点是其定量观测指标的数值会随着时间的变化而发生动态变化,并且各时点上的数值是不满足相互独立的假设的。因此不能用方差分析的方法直接进行处理。
如果在期初、期中、期末分别测量学生的电脑能力,则这是单变量重复测量问题。如果分别在三个时期测量学生的电脑和数学成绩,则是多变量重复测量的问题。
重复测量资料的方差分析需满足的前提条件: 1、 一般方差分析的正态性和方差齐性检验。
2、 协方差矩阵的球形对称性或者复合对称性;需要进行球形检验,检验对
称性。原假设:协方差满足球形对称。当拒绝球形假设时,结果中还有其他表可以检验,见例题中的分析。
被试对象 处理 测量时间1 2 3 4…………m 1 1 …………………………………………. 2 1 ………………………………………….. ………………
第十讲 重复测量数据的方差分析
重复测量设计资料的方差分析(四)
一、重复测量资料的特征:
重复测量资料系指同一受试对象的某项观测指标进行多次测量所得的数据。如对病人治疗(或手术)后1天、3天、1周、2周等多个时间点连续观察;又如在眼睛视觉研究中,让同一受试者戴上效率分别为6/6,6/18,6/36/,6/60的镜片;观察其大脑皮质在佩戴不同镜片时的电反延迟时间等。在重复测量中,由于同一个观察单位具有多个观察值,而这些观察值来自同一受试对象的不同时间(部位等),因此这类数据间往往有相关性存在,违背了方差分析要求数据满足独立性的基本条件。此时若用一般方差分析方法,将会增大犯I 类错误的概率。
例如:为比较某一降压新药与上市的标准药品降低舒张压的效果,将24名病人随机分配到新药组和标准药物组,每组12名病人,给药前先测定基础血压(3次测定的均数)。给药后每隔2周测量一次血压,共连续测量4次。在此期间有3名病人退出(标准药物组1名、新药组2名),试分析新药的降压效果是否不同于标准药。
1
两组舒张压变化量(服药后-服药前)(mmHg)
基础标准药物组基础标准药物组
编号血压2w 4w 6w 8w M i编号血压2w 4w 6w 8w M i
1 108 -8 -10 -19 -17 -54
重复测量方差分析的原理和统计操作
重复测量方差分析的原理 和统计操作
Contents
12 3
原理
统计操作
结果解释
4
简单效应分析
原理 重复测量设计是对同一因变量进行重复测度。 重复测量设计的方差分析可以是同一条件下 进行的重复测度,也可以是不同条件下的重 复测量,可以考察: (1)各种处理之间是否存在显著性差异; (2)被试之间的差异; (3)各种处理与被试分组之间的交互作用。
统计操作 使用范例: 1、攻击性的追踪调查中,考察不同性别的 高中生攻击性发展特点是否有差异,采用了 2(男/女,组间变量)×2(第一年测试/第 二年测试,组内变量)的重复测量方差分析; 2、攻击性干预的研究中,考察实验组和控 制组在团体辅导前后是否产生了变化,采用 了2(实验组/干预组,组间变量)×2(前 测/后测,组内变量)的重复测量方差分析。
统计操作 数据范式编号1 2 3 4 5 6
性别
身体攻 击 1 X 2 X 1 X 1 X 2 X 2 X
言语攻 击 X X X X X X
……X X X X X X
身体攻 击2 X X X X X X
言语攻 击2 X X X X X X
……X X X X X X
统计操作 1、analyze——general
双因素无重复试验方差分析
双因素无重复试验的方差分析检验两个因素的交互效应,对两个因素的每一 组合至少要做两次试验. 如果已知不存在交互作用,或已知交互作用对 试验的指标影响很小,则可以不考虑交互作用. 对两个因素的每一组合只做一次试验,也可以 对各因素的效应进行分析——双因素无重复试验 的方差分析.
设试验结果受两个因素 A, B 的影响,因素 A 有 r 个水平A1 , A2 , , Ar ;因素 B 有 s 个水平 B1 , B2 , , Bs .在两个因素
的每一个组合 Ai B j 作一次试验,所得试验结果为
X ij i 1,2,
, r; j 1,2,
, s .
因素B 因素A A1A2
B1
B2
Bs
x11 x21 xr 1
x12x22 xr 2
x1sx2 s xrs
Ar
假设 X ij~N ( ij , 2 ), i 1, , r , j 1, , s.各 X ij 独立, ij , 2 均为未知参数.1 r s ij , rs i 1 j 1 1 s i ij , s j 1 记 r 1 j ij , r i 1 ai
单因素方差分析
Excel中的单因素方差分析
一、目的要求
为了解决多个样本平均数差异显著性的测验问题,需要应用方差分析。方差分析是把试验看成一个整体,分解各种变异的原因。从总的方差中,将可能的变异原因逐个分出,并用误差的方法作为判断其他方差是否显著的标准,如果已知变异原因的方差比误差方差大得多,那么,该方差就不是随机产生的,试验的处理间的差异不会是由于误差原因造成的,这时处理的效应是应该肯定的。
通过学习Excel中方差分析,掌握基本的分析操作,能够处理实验的数据。 二、实验工具
Microsoft Excel 三、试验方法
叶内平均含硼量的差异显著性。
在Excel统计中,完全随机试验设计的方差分析,只须经过单因素方差分析即可得出结果,具体步骤如下: ① 打开Excel,向单元格中输入文字与数字,建立表格; ② 单击“工具”,在出现的对话框中,选择“数据分析”,选取“方差分析:
单因素方差分析”; ③ 单击“确定”,单击“输入区域:”框右边的按钮,用鼠标选中数据,再次
单击按钮;其他设置选择α为0.05。分组方式:行。点选标志位于第一列。 ④ 单击“确定”,即可输出单因素方差分析结果。
4、方差分析输出结果: SUMMARY
组 A B C D E
差异源 组间 组内
总计
观测
单因素方差分析1
VAR00001 VAR00002 31.90 1.00 27.90 1.00 31.80 1.00 28.40 1.00 35.90 1.00 24.80 2.00 25.70 2.00 26.80 2.00 27.90 2.00 26.20 2.00 22.10 3.00 23.60 3.00 27.30 3.00 24.90 3.00 25.80 3.00 27.00 4.00 30.80 4.00 29.00 4.00 24.50 4.00 28.50 4.00
单击Analyze Compare Means One-Way ANOVA,打开 One-Way ANOVA对话框。
1.VAR00001进入Dependent list框内,VAR00002进入Factor框内
2.“Contrasts”默认;“post hoc”:LSD,Duncan;O
单因素方差分析1
VAR00001 VAR00002 31.90 1.00 27.90 1.00 31.80 1.00 28.40 1.00 35.90 1.00 24.80 2.00 25.70 2.00 26.80 2.00 27.90 2.00 26.20 2.00 22.10 3.00 23.60 3.00 27.30 3.00 24.90 3.00 25.80 3.00 27.00 4.00 30.80 4.00 29.00 4.00 24.50 4.00 28.50 4.00
单击Analyze Compare Means One-Way ANOVA,打开 One-Way ANOVA对话框。
1.VAR00001进入Dependent list框内,VAR00002进入Factor框内
2.“Contrasts”默认;“post hoc”:LSD,Duncan;O
双因素方差分析习题
.
'.
1. 某湖水在不同季节氯化物含量测定值如表6.16所示。问不同季节氯化物含量有无差别?
若有差别,进行32个水平的两两比较。
解:
2.有三种抗凝剂(123,,A A A )对一标本作红细胞沉降速度(一小时值)测定,每种抗凝剂
3.将18名原发性血小板减少症患者按年龄相近的原则配为6个单位组,每个单位组中的3名患者随机分配到A 、B 、C 三个治疗组中,治疗后的血小板升高情况见表6.17,问3中治疗方法的疗效有无差别?
表6.17 不同人用鹿茸后血小板的升高值/(4
3
10/mm )
解:
4.某研究人员以0.3mL/kg 剂量纯苯给大鼠皮下注射染毒,每周3次,经45天后,实验动物白细胞综述下降至染毒前的50%左右,同时设置未染毒组。两组大鼠均按照是否给予升高白
.
'.
细胞药物分为给药组和不给药组,试验结果见表6.18,试作统计分析。
解:
问:(1)这三类人的该项生理指标有差别吗?() (2)如果有差别,请进行多重比较分析。(0.05α=) 解:
6.将24家生产产品大致相同的企业,按资金分为三类,每个公司的每100元销售收入的生产成本(单位:元)
如表6.20所示。这些数据能否说明三类公司的市场生产成本有差异(假定生产成本服从正态分布,且方差相同)?
SPSS中的单因素方差分析
SPSS中的单因素方差分析
一、基本原理 单因素方差分析也即一维方差分析,是检验由单一因素影响的多 组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差 异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不 同水平会影响到因变量的取值。
二、实验工具 SPSS for Windows 三、试验方法 例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产 了四批灯泡。在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单 位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产 的灯泡,其使用寿命有无显著差异。
灯泡 灯丝 1 2 3 4 5 6 7 8 甲 1600 1610 1650 1680 1700 1700 1780 乙 1500 1640 1400 1700 1750 丙 1640 1550 1600 1620 1640 1600 1740 1800 丁 1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤 (1)在数据窗建立数据文件,定义两个变量并输入数据,这两 个变量是:
filament 变量,数值型,取值1、2、3、4 分别代表甲、乙、丙、 丁,格式为F1.0,标签为“
spss 多因素方差分析例子
作业8:多因素方差分析
1, data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八
种草之间有无差异?具体怎么差异的? 打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:
把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:
选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,
结果输出:
因无法计算???? ??rror,即无法分开???? intercept 和???? error,无法检测interaction的影响,无法进行方差分析,
重新Analyze->General Linear Model->Univariate打开:
选择好Dependent Variable和Fixed Factor(s),点击Model打开:
点击Cust