一维齐次波动方程

“一维齐次波动方程”相关的资料有哪些?“一维齐次波动方程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一维齐次波动方程”相关范文大全或资料大全,欢迎大家分享。

第6-1章一维波动方程推导

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

应力波反射法检测基桩原理

1.1 基桩动测技术的发展及国内外研究现状

一百年以前,动力打桩公式 1865年B.de Saint Venant提出一维波动方程 50年代后期A.Smith提出了波动方程在桩基中应用的差分数值 解法,它把锤一桩一土系统简化为质量块、弹簧和阻尼器模型 从而使波动方程打桩分析进入实用阶段。

1967年美国G.G.Goble等人发表了“关于桩承载力的动测研究”一文, 1975年发表了“根据动测确定桩的承载力”研究报告 1970年以后,美国己把动力试桩技术用于实际工程 1977年PDI公司开始生产以PDA(Pile Driving Analyzer)打桩分析仪 采用波动方程程序(Case Pile Wave-equation Analysis program/contimuous,简CAPWAPC程序)对桩的侧阻分布、端阻和桩身缺陷

进行实测波形的拟合法分析。

方便、快捷、一定的准确度被各国接受 要求较高的人员素质、专业理论知识、 丰富的工程经验 缺乏与静荷载试验在桩周分层摩阻力和端阻力方面对比。

1.2.1 一维杆的纵向波动方程

一根材质均匀的等截面弹性杆,长度为L,截

面积为A,弹性模量为E,体密度为ρ 。若杆变

形时符合平截面假定,在

第七章 一维波动方程的解题方法及习题答案

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

第七章 一维波动方程的傅里叶解 小结及习题答案

第二篇 数学物理方程

——物理问题中的二阶线性偏微分方程及其解法

Abstracts:1、根据物理问题导出数理方程—偏微分方程;

2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化;

4、数理方程的线性导致解的叠加。

一、数理方程的来源和分类(状态描述、变化规律)

1、来源

I.质点力学:牛顿第二定律F?mr

??弦?2u(r,t)???a2?2u(r,t)?0(波动方程);?杆 振动:2?弹性体力学(弹性定律)?t?膜连续体力学? ??????流体力学:质量守恒律:???(?v)?0;?t??v?1?热力学物态方程:?(v??)v?p?f?0(Euler eq.).??t????II.麦克斯韦方程

?D?d???d????D??;????E?dl???B?ds???E?B;???????B?d??0???B?0;?H?dl???(j?D)?ds???H?j?D. ??E???u,B???A,u,A满足波动方程。???Lorenz力公式?力学方程;Maxwell eqs.+电导定律?电报方程。III. 热力学统计

第七章一维波动方程的解题方法及习题答案

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

第二篇 数学物理方程

——物理问题中的二阶线性偏微分方程及其解法

Abstracts:1、根据物理问题导出数理方程—偏微分方程;

2、给定数理方程的附加条件:初始条件、边界条件、物理条件

(自然条件,连接条件),从而与数理方程一起构成定解问题;

3、方程齐次化;

4、数理方程的线性导致解的叠加。

一、数理方程的来源和分类(状态描述、变化规律)

1、来源

I .质点力学:牛顿第二定律F mr = 连续体力学2222()(,)(,)0(()0;v 1()0(Euler eq.).u r t a u r t t v t v v p f t ρρρ?????-?=?????????+??=????-?+??=+=?????

弹性定律弦弹性体力学

杆 振动:波动方程);膜流体力学:质量守恒律:热力学物态方程: II.麦克斯韦方程

;;00;().,,,D D E l B s E B B B H l j D s H j D E u B A u A σρτρσ??=???=?=????=????=???=?=+????=+??=-?=?????????

???????????d d d d d d d 满足波动方程。Lorenz 力公式力学方程;Maxwell eqs.+电导定律电

齐次弦振动方程的MATLAB解法

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

齐次弦振动方程的MATLAB解法

【摘要】

弦振动问题是一个典型的波动方程的建立与求解问题。本文通过利用MATLAB特有的方程求解与画图功能,有效地构造和求解了齐次弦振动方程。并通过图像,可以直观感受方程的解,从而加深对这一问题物理意义的理解。

【关键词】

振动方程 MATLAB求解 数学物理方法

【正文】

在细弦上任意取微元分析其受力情况,通过Newton定律建立细弦振动的运动方程,可以求得弦振动的泛定方程为utt?a2uxx。

要得出振动方程的解,除了泛定方程外,我们还需要知道具体问题的初始条件与边界条件。在弦振动问题里,初始条件可以从初始位移和初始速度考虑,即:

??u???utt?0t?0??(x)??(x)

边界条件是描述物理问题在边界上受约束的状态,在弦振动方程里可以归结为三类边界问题:

1

(1) 第一类边界问题:u(2) 第二类边界问题:uuxx?Lx?0?0,ux?L?0, 称为固定端。

F(t),特别的,若F(t)?0,SYx?0?0,uxx?L??0,称x?L为自由端。

(3) 第三类边界问题:第一类和第二类边界问题的线性组合。

一、 两端固定的弦振动问题

两端固定的弦振动方程的定解问题可表示如下:

??u2

齐次弦振动方程的MATLAB解法

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

齐次弦振动方程的MATLAB解法

【摘要】

弦振动问题是一个典型的波动方程的建立与求解问题。本文通过利用MATLAB特有的方程求解与画图功能,有效地构造和求解了齐次弦振动方程。并通过图像,可以直观感受方程的解,从而加深对这一问题物理意义的理解。

【关键词】

振动方程 MATLAB求解 数学物理方法

【正文】

在细弦上任意取微元分析其受力情况,通过Newton定律建立细弦振动的运动方程,可以求得弦振动的泛定方程为utt?a2uxx。

要得出振动方程的解,除了泛定方程外,我们还需要知道具体问题的初始条件与边界条件。在弦振动问题里,初始条件可以从初始位移和初始速度考虑,即:

??u???utt?0t?0??(x)??(x)

边界条件是描述物理问题在边界上受约束的状态,在弦振动方程里可以归结为三类边界问题:

1

(1) 第一类边界问题:u(2) 第二类边界问题:uuxx?Lx?0?0,ux?L?0, 称为固定端。

F(t),特别的,若F(t)?0,SYx?0?0,uxx?L??0,称x?L为自由端。

(3) 第三类边界问题:第一类和第二类边界问题的线性组合。

一、 两端固定的弦振动问题

两端固定的弦振动方程的定解问题可表示如下:

??u2

波动方程数值模拟技术及其应用

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

波动方程数值模拟技术及其应用

作者姓名: 陈睿 专业班级: 2008050603指导教师: 熊晓军

摘 要

波动方程数值模拟技术在地震勘探中的应用非常广泛,特别是对于碳酸盐岩这一类重要的油气储集层。

本文主要介绍了声学波动方程的基本理论,相位移波动方程数值模拟方法,相位移加插值波动方程数值模拟方法的原理,并且采用相位移加插值的方法进行实际碳酸盐岩模型的数值模拟,根据实际区域的地质剖面猜测初始的地震模型,通过波动方程对该猜测的初始模型进行正演与偏移,再把通过偏移的地震剖面与实际的地震记录剖面对比,反复调整其中的相关参数,更新地质剖面,从而获得更加正确的地质解释模型。对比地质模型与原始的地震资料,从而确定了猜测的正确性,为该地区以后的储层预测、地震资料解释提供了一定的参考价值。

综上的论述,本次研究为相同地震、地质条件下礁滩储层的波场特征认识积累了一些经验,为准确地进行礁滩储层预测奠定了一定的基础。

关键词:相位移 波动方程 数值模拟 偏移

I

Numerical Simulation Technology Of Wave

Equation And Its Application

Abstract:The numer

一维导热方程 有限差分法 matlab实现

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

第五次作业(前三题写在作业纸上)

一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf文件,热扩散系数α=const,

?T?2T??2 ?t?x1. 用Tylaor展开法推导出FTCS格式的差分方程

2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。

4. 编写M文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得

到,添加,修改后得到。) function rechuandaopde

%以下所用数据,除了t的范围我根据题目要求取到了20000,其余均从pdf中得来 a=0.00001;%a的取值 xspan=[0 1];%x的取值范围 tspan=[0 20000];%t的取值范围

ngrid=[100 10];%分割的份数,前面的是t轴的,后面的是x轴的 f=@(x)0;%初值

g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二

[T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t);

mesh

一维导热方程 有限差分法 matlab实现

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

第五次作业(前三题写在作业纸上)

一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf文件,热扩散系数α=const,

?T?2T??2 ?t?x1. 用Tylaor展开法推导出FTCS格式的差分方程

2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。

4. 编写M文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得

到,添加,修改后得到。) function rechuandaopde

%以下所用数据,除了t的范围我根据题目要求取到了20000,其余均从pdf中得来 a=0.00001;%a的取值 xspan=[0 1];%x的取值范围 tspan=[0 20000];%t的取值范围

ngrid=[100 10];%分割的份数,前面的是t轴的,后面的是x轴的 f=@(x)0;%初值

g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二

[T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t);

mesh

第九节二阶常系数非齐次线性微分方程

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

good

第九节 二阶常系数非齐次线性微分方程

x x

f(x) [P(x)cos x Q(x)sin x]ef(x) P(x)emmm教学目的:掌握自由项为和的二

阶常系数非齐次线性微分方程特解的方法

教学重点:二阶常系数非齐次线性微分方程求特解的待定系数法 教学难点:二阶常系数非齐次线性微分方程求特解的待定系数法 教学内容:

二阶常系数非齐次线性微分方程的形式为:

y py qy f(x)

根据二阶线性微分方程解的结构,要求解二阶常系数非齐次线性微分方程,只需先求得

对应齐次线性微分方程的通解和该非齐次线性微分方程的一个特解即可。而齐次线性微分方程的通解已在上一目得到解决,因此本节将解决非齐次线性微分方程的特解问题。为此,针对自由项的特点,采用如下待定系数法:

根据二阶非齐次线性微分方程解的结构,要求二阶常系数非齐次线性微分方程的通解,

**yy Y就是非齐次方程的通Y只需先求得非齐次方程的特解和对应齐次方程的通解,则

解。而用待定系数法求二阶常系数非齐次线性微分方程y py qy f(x)的特解分两种

情形讨论:

一、f(x) e xPm(x)型

这里 是常数,Pm(x)是m次多项式.

由于指数函数与多项式之积的导数仍是同类型的函数,而现在微分方程右端

分离变量法在求解波动方程中的应用

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

龙源期刊网 http://www.qikan.com.cn

分离变量法在求解波动方程中的应用

作者:王平心

来源:《科技视界》2014年第34期

【摘 要】分离变量法又称傅里叶级数法,它是求解数学物理方程定解问题的最常用和最基本的方法之一。该方法的基本思想是将偏微分方程的定解问题转化为常微分方程的定解问题。将方程中含有各个变量的项分离开来,从而将原方程拆分成多个更简单的只含一个自变量的常微分方程。它能够求解相当多的定解问题,特别是对一些常见区域上混合问题和边值问题,都可以用分离变量法试着求解。本文将讨论分离变量法在求解波动方程中的应用。 【关键词】分离变量法;波动方程;求解 0 引言

自然界很多物理现象都可以归结为波动问题,在机械工程中经常遇到的振动问题,可归结为机械波;在船舶工业中使用的声纳,可归结为声波问题;在广播领域和光学领域,可归纳出电磁波。他们都具有相同的数学物理基础,并且可以用一个式子表示:

我们称它为波动方程,因为它描述了自然界的波动这种运动形式,其中△为拉普拉斯算子。△中,变量的个数表示波动船舶空间的维数,现实生活中的波动,一般都是三维的。但是为