向量平行的坐标表示证明

“向量平行的坐标表示证明”相关的资料有哪些?“向量平行的坐标表示证明”相关的范文有哪些?怎么写?下面是小编为您精心整理的“向量平行的坐标表示证明”相关范文大全或资料大全,欢迎大家分享。

向量平行的坐标表示

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

第二章 平面向量 2.4.3 向量平行的坐标表示

复习回顾回答下列问题向量共线定理

b λa向量的坐标表示?

b a

向量的坐标运算?

当向量用坐标表示时,向量的和、 差向量数乘都可以用相应的坐标来表示。

两个共线的向量能否用坐标来表示 呢?两平行向量的坐标之间有什么关系?

1 向量坐标表示:2 加、减法坐标运算法则:a + b=( x2 , y2) + (x1 , y1)= (x2+x1 , y2+y1) a - b=( x2 , y2) - (x1 , y1)= (x2- x1 , y2-y1) ( x1 , y1 ) λa =λ(x i+y j )=λx i+λy j =

3一个向量坐标重要性质:若A(x1 , y1) , B(x2 , y2)则 AB =(x2 - x1 , y2 – y1 )

有向线段 P1 P2 的定比分点坐标公式与定比分值公式。

注意:x x 2 x 1 1 y y1 y 2 1

= x x1 或 = y y1x2 x

y2 y

( 1)

在 运 用 公 式 时 , 要 注分 清 起 点 坐 标 、 终 点标 和 分 点 意 坐 坐

平面向量的坐标表示(复习课教案)

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

平面向量的坐标表示

题组1:基础再现

1.已知O是坐标原点,A(2,1),B(?4,0),且AB?4BC?0,在向量OC? . 2.已知a=(2,1),b=(-3,4),则3a-5b =_____ 3.已知向量a?(4,3),b?(6,x),且a//b,求实数x= .

4.已知向量a?(?3,1),b?(1,?2),若(?2a?b)?(ka?b),则实数k= .

题组2:平面向量基本定理的应用

知识建构:

(1)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数?1,?2,使a =?1 e1+?2e2.

(2)一个平面向量可用一组基底e1,e2表示成a = ?1 e1+?2 e2的形式,我们称它为向量的一个分解,当e1,e2互相垂直时,就称为向量的正交分解.

例1如图,已知△OAB中,点C是点B关于点A的对称点,点D是线段OB的一个靠近B的三等

分点,DC和OA交于E,设AB=a,AO=b. (1)用向量a和b表示向量OC,CD; B

(2)若OE=?OA,求实数?的值. D A E

O C

例2已知OA=a,OB=b,点G是

高考高中复习数学第二章平面向量2.3平面向量的基本定理及坐标表示2.3.2_2.3.4平面向量共线的坐标表示

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

小初高K12学习教材

小初高K12学习教材 2.3.2-2.3.4 平面向量共线的坐标表示

[课时作业]

[A 组 基础巩固]

1.若AB →=(3,4),A 点的坐标为(-2,-1),则B 点的坐标为( )

A .(1,3)

B .(5,5)

C .(1,5)

D .(5,4)

解析:设B (x ,y ),则有AB →=(x -(-2),y -(-1))=(x +2,y +1)=(3,4),所以?????

x +2=3,y +1=4,解得????? x =1,

y =3,所以B (1,3).

答案:A

2.下列各组向量中,可以作为基底的是( )

A .e 1=(0,0),e 2=(-2,1)

B .e 1=(4,6),e 2=(6,9)

C .e 1=(2,-5),e 2=(-6,4)

D .e 1=(2,-3),e 2=? ????12

,-34 解析:因为零向量与任意向量共线,故A 错误.对于B ,e 1=2(2,3),e 2=3(2,3),所以e 1

=23e 2,即e 1与e 2共线.对于D ,e 1=4? ????12

,-34=4e 2,所以e 1与e 2共线. 答案:C

3.已知A ,B ,C 三点在一条直线上,且A (3,-6),B (-5,2),若C 点的横坐

平面向量的正交分解和坐标表示及运算 (2)

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

选填,简要介绍文档的主要内容,方便文档被更多人浏览和下载。

§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算 教学目的:

(1)理解平面向量的坐标的概念;

(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.

教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性.

授课类型:新授课

教 具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2

(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;

(2)基底不惟一,关键是不共线;

(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;

(4)基底给定时,分解形式惟一. λ1,λ2是被a,e1,e2唯一确定的数量

二、讲解新课:

1.平面向量的坐标表示

如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得

1 a xi yj…………○

我们把(x,y)叫做向量a的(直角)坐标,记作

2 a

平面向量基本定理及坐标表示导学案

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

平面向量的基本定理及坐标表示

主备人:王桂香 复核人:王月珍 时间:2014-12-18

【学习目标】 1.通过探究活动,能推导并理解平面向量基本定理.

2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量 解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能 够用基底来表达.

3.了解向量的夹角与垂直的概念。 【教学重点】平面向量基本定理;

【教学难点】平面向量基本定理的运用。 一、【复习回顾】

1. 向量加法与减法有哪几种几何运算法则?

?2.怎样理解向量的数乘运算λa? ??(1)模:|λa|=|λ||a|; ?????(2)方向:λ>0时λa与a方向相同;λ<0时λa与a方向相反;λ=0时λa=0 ????3. 向量共线定理 :向量b与非零向量a共线则:有且只有一个非零实数λ,使b=λa. 二、【自主预习】

在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论.

????????探究1:给定平面内任意两个不共线的非零向量e1、e2,请你作出向量b=3e1+2e2、c

平面向量的正交分解和坐标表示及运算 (2)

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

选填,简要介绍文档的主要内容,方便文档被更多人浏览和下载。

§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算 教学目的:

(1)理解平面向量的坐标的概念;

(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.

教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性.

授课类型:新授课

教 具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2

(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;

(2)基底不惟一,关键是不共线;

(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;

(4)基底给定时,分解形式惟一. λ1,λ2是被a,e1,e2唯一确定的数量

二、讲解新课:

1.平面向量的坐标表示

如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得

1 a xi yj…………○

我们把(x,y)叫做向量a的(直角)坐标,记作

2 a

应用类比法学习平面向量的坐标表示和数量积

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

中学生数学

年 !月上

#期

高中%

应用类比法学习平面向量的坐标表示和数量积山东省济南市长清第五中学!

&

齐相国

(

类比法是创新思维的一种重要的形式平,

另外还要注意数学符号的正确书写万71(

,

面向量的坐标运算和数量积运算是平面向量运算的主旋律是学习的重点正确理解平面向量的坐标表示和平面向量的数量积的意义、,,(

是向量的坐标表示,

,

,

1

是点的坐标,

表示不能将向量万的坐标写成万能将点,、

1

,

也不

的坐标写成,

,

,

弄清点的坐标与向量的坐标平面向量的数量积与实数乘法的区别和联系是学好这一部分(

二平面向量的数一积可通过以下三方面类比来学习%

的关键一点的坐标与向)坐标的异同向量坐标表示的实质是,、

从物理学角度平面向量的数量积是从,

,

物理做功抽象出来的功定义为一个物体在外力=作用下与所产生的位移>的数量积?>一 2=%一=,

向量的坐标是向

量的代数表示任一平面向量可以用一个有序实数对来表示示一个向量(

+

反过来任一有序实数对就表,

,

#%

Α<

欲通过从力做功情况来看可9

,

即一个平面向量就是一个二元有(

以加深我们对数量积运算律的认识若力增

序实数对点的坐标与向量坐标形式上相同都分为横坐标和纵坐标

倍则功也增大,

,

9

倍而当力反转方向时功要变

,

,

向量的坐

应用类比法学习平面向量的坐标表示和数量积

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

中学生数学

年 !月上

#期

高中%

应用类比法学习平面向量的坐标表示和数量积山东省济南市长清第五中学!

&

齐相国

(

类比法是创新思维的一种重要的形式平,

另外还要注意数学符号的正确书写万71(

,

面向量的坐标运算和数量积运算是平面向量运算的主旋律是学习的重点正确理解平面向量的坐标表示和平面向量的数量积的意义、,,(

是向量的坐标表示,

,

,

1

是点的坐标,

表示不能将向量万的坐标写成万能将点,、

1

,

也不

的坐标写成,

,

,

弄清点的坐标与向量的坐标平面向量的数量积与实数乘法的区别和联系是学好这一部分(

二平面向量的数一积可通过以下三方面类比来学习%

的关键一点的坐标与向)坐标的异同向量坐标表示的实质是,、

从物理学角度平面向量的数量积是从,

,

物理做功抽象出来的功定义为一个物体在外力=作用下与所产生的位移>的数量积?>一 2=%一=,

向量的坐标是向

量的代数表示任一平面向量可以用一个有序实数对来表示示一个向量(

+

反过来任一有序实数对就表,

,

#%

Α<

欲通过从力做功情况来看可9

,

即一个平面向量就是一个二元有(

以加深我们对数量积运算律的认识若力增

序实数对点的坐标与向量坐标形式上相同都分为横坐标和纵坐标

倍则功也增大,

,

9

倍而当力反转方向时功要变

,

,

向量的坐

2.3平面向量的基本定理及坐标表示(1)(教学设计)

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)

2.3 平面向量的基本定理及坐标表示(1)(教学设计) 2.3.1平面向量基本定理;2.3.2平面向量的正交分解及坐标表示

[教学目标] 一、知识与能力:

1. 了解平面向量基本定理。

2.掌握平面向量基本定理,理解平面向量的正交分解及坐标表示; 3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.

二、过程与方法:

体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观:

培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾:

1.实数与向量的积:实数λ与向量a的积是一个向量,记作:λa

(1)|λa|=|λ||a|;(2)λ>0时λa与a方向相同;λ<0时λa与a方向相反;λ=0时λa=0

2.运算定律

??????????????????结合律:λ(μa)=(λμ)a ;分配律:(λ+μ)a=λa+μa, λ(a+b)=λa+λb

????3. 向量共线定理 向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=

课堂新坐标(教师用书)高中数学 3.1.3+4 空间向量基本定理 空间向量的坐标表示课后知能

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

【课堂新坐标】(教师用书)2013-2014学年高中数学 3.1.3+4 空间向量基本定理 空间向量的坐标表示课后知能检测 苏教版选修2-1

一、填空题

1.设命题p:a,b,c是三个非零向量,命题q:{a,b,c}为空间的一个基底,则命题p是命题q的______条件(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”).

【解析】 命题q中,{a,b,c}为空间的一个基底,则根据基底的定义,可知a,b,

c为非零向量,且为不共面向量.故q?p,p【答案】 必要不充分

q,所以命题p是命题q的必要不充分条件.

2.设向量a,b,c不共面,则下列可作为空间的一个基底的是________. ①{a+b,b-a,a}; ②{a+b,b-a,b}; ③{a+b,b-a,c}; ④{a+b+c,a+b,c}.

【解析】 因为只有③中三个向量不共面,所以可以作为一个基底. 【答案】 ③

3.已知{i,j,k}为空间的一个基底,若a=i-j+k,b=i+j+k,c=i+j-k,d=3i+2j-4k,又d=α a+β b+γc,则α=________,β=________,γ=________.

α+β+γ=3??

【解析】 由题意知:?-α+β