初中数学概率大题经典例题及答案
“初中数学概率大题经典例题及答案”相关的资料有哪些?“初中数学概率大题经典例题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学概率大题经典例题及答案”相关范文大全或资料大全,欢迎大家分享。
初中数学基础知识及经典例题
初中数学基础知识及经典例题
综合知识讲解
第一章 应知应会知识点
2.1 代数篇
一 数与式 (一)有理数 1 有理数的分类 2 数轴的定义与应用 3 相反数 4 倒数 5 绝对值
6 有理数的大小比较 7 有理数的运算 (二)实数 8 实数的分类 9 实数的运算 10 科学记数法 11 近似数与有效数字 12 平方根与算术根和立方根 13 非负数
14 零指数次幂 负指数次幂 (三)代数式
15 代数式 代数式的值 16 列代数式 (四)整式 17 整式的分类
初中数学基础知识及经典例题
18 整式的加减 乘除的运算 19 幂的有关运算性质 20 乘法公式 21 因式分解 (五)分式 22 分式的定义 23 分式的基本性质 24 分式的运算 (六)二次根式 25 二次根式的意义 26 根式的基本性质 27 根式的运算 二 方程和不等式 (一)一元一次方程
28 方程 方程的解的有关定义 29 一元一次的定义 30 一元一次方程的解法 31 列方程解应用题的一般步骤 (二)二元一次方程 32 二元一次方程的定义 33 二元一次方程组的定义
34 二元一次方程组的解法(代入法消元法 加减消元法) 35 二元一次方程组的应用 (三)一元二次方程 36 一元二次方程的定
2020-2021初中数学概率经典测试题及答案
2020-2021初中数学概率经典测试题及答案
一、选择题
1.下列事件中是确定事件的为( )
A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片
C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数
【答案】A
【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;
B. 打开电视机正在播放动画片是随机事件,故本选项错误;
C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;
D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。
故选A.
2.下列诗句所描述的事件中,是不可能事件的是()
A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰
【答案】D
【解析】
【分析】
不可能事件是指在一定条件下,一定不发生的事件.
【详解】
A、是必然事件,故选项错误;
B、是随机事件,故选项错误;
C、是随机事件,故选项错误;
D、是不可能事件,故选项正确.
故选D.
【点睛】
此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机
C语言经典例题及答案
作业一 一、求一个任意边长的矩形面积。 #include scanf(\sum=w*h; printf(\} 二、求一个任意半径的圆的面积及周长。 #define PI 3.14159 #include printf(\}?? 三、已知:w=5, y=4, z=2, 求表达式:w*y/z的值,并输出。 ##include w=5; y=4; z=2; r=w*y/z; printf(\} 作业二 一、从键盘上输入三个数,求出其中的最大值,并输出。 #include scanf(\max=a; if(max printf(\}?? 。 二、求sin300+sin600+cos300+cos600之和。(注意:30*3.14159/180) #include
交通工程经典例题及答案
第二章作业
2-1 下表为某高速公路观测交通量,试计算: (1)小时交通量;(2)5min高峰流率;(3)15min高峰流率;(4)15min高峰小时系数。
解:(1)小时交通量=201+…+195=2493 (2) 5min高峰流率=232×12=2784
(3)15min高峰流率=(232+219+220) ×4=2684 (4)15min高峰小时系数=2493/2684=92.88%S
2-2 对长为100m的路段进行现场观测,获得如下表 的数据,试求平均行驶时间t,区间平均车速,时间平均车速。
解:(1)时间平均车速:v??vni?75?...?67.9?72.16
16(2)区间平均车速:v?L11?nvi?nL?72 t?i[例]某公路需要进行拓宽改造,经调查预测在规划年内平均日交通量为50000辆/天(小汽
车),设计小时系数K=17.86x-1.3-0.082,x为设计小时时位(x取30),取一条车道的设计能力为1500辆/小时(小汽车),试问该车道需修几车道? 解:1、设计小时交通量系数:k?17.86?30?1.3?0.086?0.13 2、设计小时交通量DHV?50000?13/100?6500 3、车道数:n?取n=
中考数学勾股定理经典例题及答案(老师版)
还有中考数学勾股定理经典例题及答案(学生版)请自己搜
类型一:勾股定理的直接用法
1、在Rt△ABC中,∠C=90°
(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.
思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c=
(3) 在△ABC中,∠C=90°,c=25,b=15,a=
举一反三
【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5
又∵∠ABC=90°且BC=3
∴由勾股定理可得 AB2=AC2-BC2
=52-32 =16 ∴AB= 4
∴AB的长是4.
类型二:勾股定理的构造应用
交通工程经典例题及答案
第二章作业
2-1 下表为某高速公路观测交通量,试计算: (1)小时交通量;(2)5min高峰流率;(3)15min高峰流率;(4)15min高峰小时系数。
解:(1)小时交通量=201+…+195=2493 (2) 5min高峰流率=232×12=2784
(3)15min高峰流率=(232+219+220) ×4=2684 (4)15min高峰小时系数=2493/2684=92.88%S
2-2 对长为100m的路段进行现场观测,获得如下表 的数据,试求平均行驶时间t,区间平均车速,时间平均车速。
解:(1)时间平均车速:v??vni?75?...?67.9?72.16
16(2)区间平均车速:v?L11?nvi?nL?72 t?i[例]某公路需要进行拓宽改造,经调查预测在规划年内平均日交通量为50000辆/天(小汽
车),设计小时系数K=17.86x-1.3-0.082,x为设计小时时位(x取30),取一条车道的设计能力为1500辆/小时(小汽车),试问该车道需修几车道? 解:1、设计小时交通量系数:k?17.86?30?1.3?0.086?0.13 2、设计小时交通量DHV?50000?13/100?6500 3、车道数:n?取n=
文登考研概率经典论例题解析
第一章 随机事件和概率
第1节 重要概念、定理和公式的剖析
【例1.2】设A,B,C表示三个随机事件,试将下列事件用A,B,C表示出来.
(1)A出现,B,C都不出现; (2)A,B都出现,C不出现; (3)三个事件都出现; (4)三个事件中至少有一个出现; (5)三个事件都不出现; (6)不多于一个事件出现; (7)不多于两个事件出现; (8)三个事件至少有两个出现; (9)A,B至少有一个出现,C不出现;(10)A,B,C中恰好有两个出现. 【解】(1)ABC. (2)ABC. (3)ABC. (4)A?B?C. (5)ABC.
(6)ABC?ABC?ABC?ABC或AB?BC?AC.
(7)ABC?ABC?ABC?ABC?ABC?ABC?ABC或ABC. (8)ABC?ABC?ABC?ABC或AB?BC?AC. (9)(A?B)C.
(10)ABC?ABC?ABC.
【例1.5】已知P(A)= P(B)= P(C)=
11,P(AB)=0,P(AC)= P(BC)=,则
64A,B,C全部发生的概率为 . 【解】P(ABC)=1-P(A?B?C)
【例1.6】P(A)?0.7,P(A?B)?0.
数学经典例题集锦:数列(含答案)
数列题目精选精编
【典型例题】
(一)研究等差等比数列的有关性质 1. 研究通项的性质
n?1{a}a?1,a?3?an?1(n?2). n1n例题1. 已知数列满足
(1)求a2,a3;
3n?1an?2. (2)证明:
2解:(1)?a1?1,?a2?3?1?4,a3?3?4?13.
n?1a?a?3nn?1(2)证明:由已知,故an?(an?an?1)?(an?1?an?2)???(a2?a1)
?a1?3
n?1?3n?23n?13n?1???3?1?an?2, 所以证得2.
例题2. 数列?an?的前n项和记为Sn,a1?1,an?1?2Sn?1(n?1) (Ⅰ)求?an?的通项公式;
a?1,22b3,a3?b(Ⅱ)等差数列?bn?的各项为正,其前n项和为Tn,且T3?15,又a1?b成等比数列,求Tn.
解:(Ⅰ)由an?1?2Sn?1可得an?2Sn?1?1(n?2), 两式相减得:an?1?an?2an,an?1?3an(n?2),
又a2?2S1?1?3∴a2?3a1 故?an?是首项为1,公比为3的等比数列 ∴an?3n?1
(Ⅱ)设?bn?的公比为d,由T3?15得,可得b1?b2?b3?15,可得b2?
高考数学总复习之概率大题
决战高考
高考总复习 概率含答案
1(本小题满分12分)某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分,求甲的得分大于乙的得分的概率. (参考数据:92?82?102?22?62?102?92?466,
72?42?62?32?12?22?112?236)
2在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问
题:
(1)本次活动共有多少件作品参加评比?
(2)哪组上交的作品数量最多?共有多少件?
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?
??3已知向量a??
数学经典例题集锦:数列(含答案)
数列题目精选精编
【典型例题】
(一)研究等差等比数列的有关性质 1. 研究通项的性质
n?1{a}a?1,a?3?an?1(n?2). n1n例题1. 已知数列满足
(1)求a2,a3;
3n?1an?2. (2)证明:
2解:(1)?a1?1,?a2?3?1?4,a3?3?4?13.
n?1a?a?3nn?1(2)证明:由已知,故an?(an?an?1)?(an?1?an?2)???(a2?a1)
?a1?3
n?1?3n?23n?13n?1???3?1?an?2, 所以证得2.
例题2. 数列?an?的前n项和记为Sn,a1?1,an?1?2Sn?1(n?1) (Ⅰ)求?an?的通项公式;
a?1,22b3,a3?b(Ⅱ)等差数列?bn?的各项为正,其前n项和为Tn,且T3?15,又a1?b成等比数列,求Tn.
解:(Ⅰ)由an?1?2Sn?1可得an?2Sn?1?1(n?2), 两式相减得:an?1?an?2an,an?1?3an(n?2),
又a2?2S1?1?3∴a2?3a1 故?an?是首项为1,公比为3的等比数列 ∴an?3n?1
(Ⅱ)设?bn?的公比为d,由T3?15得,可得b1?b2?b3?15,可得b2?