四边形的内角和公开课视频
“四边形的内角和公开课视频”相关的资料有哪些?“四边形的内角和公开课视频”相关的范文有哪些?怎么写?下面是小编为您精心整理的“四边形的内角和公开课视频”相关范文大全或资料大全,欢迎大家分享。
四边形的内角和(公开课)
毕浦中学
柴春杰
请你欣赏
美国国防部的五角大楼
五角大楼俯视图
荷兰:荷兰盾 荷兰 荷兰盾
缅甸:缅元 缅甸 缅元
海地:古德 海地 古德
澳门:元 澳门 元
生活中的几何图形 根据以下这些图, 根据以下这些图,你能抽象出它们是什么几何 图形吗? 图形吗?
三角形
长方形
四边形
六边形
八边形
5.1 多边形第1课 四边形
C的三条线段首尾顺 定义: 不在同一条直线上的三条线段 定义 由不在同一条直线上的三条线段首尾顺 相接所形成的图形叫三角形 次相接所形成的图形叫三角形 。
A 四边形的定义…
BA D
由不在同一条直线上的四条线段首尾 由不在同一条直线上的四条线段首尾 同一条直线上的四条线段 顺次相接所形成的图形叫做 所形成的图形叫做四边形 顺次相接所形成的图形叫做四边形 。
B
C
A D G B C E
H
F四边形的各条边不都在任意 一条边所在直线的同一侧. 一条边所在直线的同一侧.
四边形的各条边都在任意 一条边所在直线的同一侧. 一条边所在直线的同一侧.
凸四边形
凹四边形
我们现在所学的是凸多边形, 温馨提示:我们现在所学的是凸多边形,即多边形的各边 都在任意一条边所在直线的同一侧。 都在任意一条边所在直线的同一侧。
三角形的元素
四边形的元素
A边
A
D内角 (角)
B
●
C顶点 △ A
平行四边形的认识公开课教学设计
平行四边形的认识
教学目标:
1、结合生活情境和操作活动让学生感悟平行四边形易变形的特性。 2、让学生通过直观的操作活动,初步建立平行四边形的表象。学会在方格纸上画平行四边形 。
3、进一步培养学生操作、观察、推理、合作、探索的能力 。 4、通过多种活动 , 使学生逐步形成空间观念 , 感受数学与生活的联系 。
教学重点:初步认识平行四边形 ,会在方格纸上画平行四边形, 感悟平行四边形的特性。
教学难点:学生动手画、剪平行四边形 教学准备:白板课件
教学过程:
一、创设情境、导入新课。 1、复习准备
我们上节课认识了四边形,它们有什么特点?(由四条线段围成的图形是四边形。)
我们知道正方形和长方形是日常生活中比较常见的四边形。出示长方形,这是什么图形?
教师移动成平行四边形,谈话:仔细看,现在围成的还是长方形吗?是正方形吗?它们有几条边?几个角?它们叫什么图形呢?学生回
1
答后教师说明:这样的图形叫平行四边形。 揭题:今天我们来“认识平行四边形”(揭题)
二、学习新课
1、直观展示,建立平行四边形的表象
(1)对比刚才演示的长方形木框和变形后的平行四边形木框,引导学生观察两组对边有什么变化?我们知道长方形的对边相等,那么现在你知道平形四边
中点四边形与原四边形的关系
中点四边形与原四边形的关系
烟台市祥和中学初春晓2013年7月18日 08:54浏览:89评论:7鲜花:0专家浏览:0指导教师浏览:8
指导教师 刘永渤于13-7-18 09:07推荐充分利用几何画板来进行探究,让学生在小组合作中进行学习,现代教育技术运用得比较好,课标理念运用恰当!
学生小组讨论,学生代表发言。(取原四边形的四边的中点,顺次连接得到的新四边形就满足要求)
像这种顺次连接四边形四边中点的四边形,我们成为中点四边形。那么任意四边形的中点四边形是平行四边形吗?它其 中蕴含着怎样的数学道理?你能用你学过的数学知识解释吗?
【任务】
1
小组合作,探索为什么任意四边形的中点四边形是平行四边形?
2.通过合作探索,找到决定中点四边形形状的因素是什么? 3. 中点四边形除了是平行四边形外,添加什么条件能使它成为菱形,矩形,正方形? 4. 我们学过的特殊四边形的中点四边形都是什么形状?
【过程】
活动准备:
小组合作学习参考下列步骤,并提出修改意见,确定本组研究性学习的具体步骤。
活动1.探索任意四边形的中点四边形是平行四边形的原因 建议步骤:
(1) 个人独立完成:在练习本上画出一个任意四边形的中点四边形,并观察你画出的中点四边形是否为平行四边形?
(2) 首先个人
十五、四边形
十五、四边形
水平预测
(完成时间90分钟)
双基型
**1.若一个十边形的每个内角都相等,求这个十边形内角的度数。
0**2.一个多边形的内角和与某一个外角的总和等于1350,求这个多边形的边数。
**3.如图15-1,在ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于点G、H,请判
断下列结论:①BE=DF;②AG=GH=HC;③EG=1BG;④SΔABE=3SΔAGE,其中正确的结论有( )。 2
(A)1个 (B)2个 (C)3个 (D)4个
**4.如图15-2,在ΔABC中,AB=AC,E为AB的中点,以点E为圆心、BE为半径画弧交BC于点
D,连结ED,并延长ED到点F,使DF=DE,连结FC。求证:∠F=∠A。
**5.如图15-3,ABCD的四个内角的平分线相交于E、F、G、H。求证:四边形EFGH为矩形。
纵向型
***6.如图15-4,在ΔABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于点E,AF
⊥CF于点F,直线EF分别交AB、AC于点M、N。求证:(1)四边形AECF为矩形;(2)MN=1BC。
2
***7. 如图15-5,在矩形ABCD中,AB=16,BC=8,将矩形
四边形的认识
篇一:四边形的认识教学反思
《四边形的认识》教学反思
本课是在学生已经学习了三角形,认识了正方形和长方形的基础上进行的,主要是让学生感受不同形状的四边形,并掌握其特征。为了使学生能轻松愉快地学习并掌握本节课的知识,我主要从以下几个方面 考虑、设计:
一、从已有经验开始,直接引入,尝试判断。
在课的开始,我让学生看看课件中的课题,让学生说说对四边形的认识,了解学生脑海中对四边形已有的认。之后出示课本的四边形图形,让每位学生逐个动手判断,并说出不是四边形的图形为什么不是,从而让学生用自己已有的经验基础归纳四边形的特点,对四边形的认识有进一步的提升。这里,注重对学生已有经验的应用和提升,以学生的基础为起点,在此基础上开展学习,逐步提高。
二、在多次活动中辨析,积极参与,深入了解。
小学生具有好奇,好动的特点,而数学知识本身又是枯燥,抽象的 ,要使掌握数学知识,就必须符合儿童的自身的特点。在这节课中,我让学生通过找一找,说一说,分一分,画一画等多种活动中斩获新知,使学生整节课都处于主动积极的状态中,不仅培养了学生的动手能力和观察能力,而且还使学生养成了善于思考,乐于动脑的好习惯。学生通过对四边形的判断、把四边形分类的活动,进一步感受到了四边形的细微差别之处,有
十五、四边形
十五、四边形
水平预测
(完成时间90分钟)
双基型
**1.若一个十边形的每个内角都相等,求这个十边形内角的度数。
0**2.一个多边形的内角和与某一个外角的总和等于1350,求这个多边形的边数。
**3.如图15-1,在ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于点G、H,请判
断下列结论:①BE=DF;②AG=GH=HC;③EG=1BG;④SΔABE=3SΔAGE,其中正确的结论有( )。 2
(A)1个 (B)2个 (C)3个 (D)4个
**4.如图15-2,在ΔABC中,AB=AC,E为AB的中点,以点E为圆心、BE为半径画弧交BC于点
D,连结ED,并延长ED到点F,使DF=DE,连结FC。求证:∠F=∠A。
**5.如图15-3,ABCD的四个内角的平分线相交于E、F、G、H。求证:四边形EFGH为矩形。
纵向型
***6.如图15-4,在ΔABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于点E,AF
⊥CF于点F,直线EF分别交AB、AC于点M、N。求证:(1)四边形AECF为矩形;(2)MN=1BC。
2
***7. 如图15-5,在矩形ABCD中,AB=16,BC=8,将矩形
各种四边形的性质和判定总结
各种四边形的性质和判定类 别 (定义) 性质 边 对边 对边 角 对角 邻角 对角线 对角线 互相 对称性 对称 两组对边 一组对边 的四边形 是平行四 边形 的四边形 是平行四 边形 边 两组对边 的四边形 叫做平行 四 边 形 判定 角 两组对角 对角线 对角线
有 四个角 的平行四 边形叫做 对角线 中心对称 轴对称
有 的平行四 边形; 有 的四边形 有一组 中心对称 轴对称 对角线 平分 对角线 对边 四边 四个角 中心对称 轴对称 的矩形是 正方形 的菱形是 正方形 的平行四 边形; 四边 的四边形
对角线 的 平行四边 形是矩形 对角线 的平行四 边形是菱 形 对角线 的平行四 边形是正 方形 对角线 的梯形是 等腰梯形
矩形有 的平行四 边形叫做 四边 对角线
菱形有
的平行四 边形叫做
正方形的梯形叫 等腰梯形 两底 两腰 同一底上 对角线 相等 对称 两腰 的梯形是 等腰梯形 同一底上 的两个角 的梯形
四边形的认识___说课稿3
《四边形的认识》说课稿
《四边形的认识》是人教版义务教育课程标准实验教科书小学数学三年级上册第三章第一节的教学内容。教材通过一幅教学场景图,图上有许多关于“图形与几何”的信息。要求从主题图中找出四边形,进而探讨四边形和长方形正方形的特点。
学生已经会认识一些图形。进入三年级后,他们的求知欲增强了,动手能力也有所提高,思考问题的方式方法也逐步呈现多样化,但是,对四边形和长方形正方形的特点在理解上还有一定的难度。
因此,我根据:小学数学课程标准中“图形与几何”的要求,帮助学生建立空间观念,根据物体的特征,抽象出几何图形,和教材的特色,结合学生的实际情况,制定了以下教学目标:
1、直观感知四边形,能区分和辨认四边形。进一步认识长方形和正方形,知道它们的角都是直角。
2、通过围一围,找一找,涂一涂,折一折,摆一摆,画一画等活动,培养学生的观察比较和概括抽象的能力。
3、通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。
这节课要求学生能够从众多的图形中找出四边形,并能感悟到四边形有四条边和四个角,特别是加深对长方形和正方形的认识,这是本课的教学重点,也是本课的教学难点。
根据三年级学生的年龄特点以及学生的知识面,
平等四边形培优(二)
对平行四边形相关知识的拓展应用,值得一看
平等四边形培优(二)
例1. E为矩形ABCD的边CD上的一点,且
例2.矩形纸片ABCD,AB=8,BC=12,点M在BC上,且CM=4,现将纸片折叠,使点D落在M处,折痕为EF,求AE的长。
例3.点P是矩形ABCD的边AD的一个动点,矩形的两条边AB,BC的长分别为3和4.那么P到两条对角线AC,BD的距离和是多少?
例4.菱形较在角是较小角的3倍,高为4,求菱形的面积。
例5.菱形ABCD中,E,F分别为BC,CD上的点,∠B的度数。
例6.如图,M是等腰三角形ABC底边BC上的中点,DM⊥ME⊥AC,DG⊥AC,求证:四边形MEND是菱形。
对平行四边形相关知识的拓展应用,值得一看
例7.在四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD
1)求证:四边形AECD是菱形。
2)若点E是AB的中点,试判断△ABC的形状。
例8.
在正方形ABCD中,E,F分别在AD,DC上,且DE=DF,BM⊥EF于M.求证:ME=MF
例9.在边长为a的正方形ABCD中,
E,G分别为AB,BC边的中点,且AE⊥EF,CF为正方
形的外角∠DCH的平分线。
求证:1
)∠BAE=∠
FEC
2)△
AGE≌△ECF 3)求△AEF的面积
《认识四边形》教学反思
观察是学生建立空间观念的基础,最初对图形的认识就是由观察开始的,所以在四边形的认识过程中我安排了一系列的观察活动。因为已经有认识常见的简单平面图形的经验,有一定的空间与几何的基础,所以本节课学生接受新知相对来说较快。
本节课在以前的基础上对学生的能力要求又有一定的提升,要求学生能够更加仔细地观察,对图形的认识更全面。所以,在课堂上我有意识地去引导学生在观察平面图形的时候注意图形构成的几大要素,发现同类图形的基本特征。
课堂初,我让学生自己画出自己猜测的四边形的样子,展示介绍自己画出的四边形,我将他们画出的一些四边形贴在黑板上,相互观察判断,学生根据已有经验能很快判断出给出的图形哪些是四边形,哪些不是,但是发现有学生对立体图形和平面图形的表述不清楚甚至混淆,于是,我在课堂上临时加入了四边形是平面图形还是立体图形的讲解环节。这一点,尽管教材上有显示,但自己课前没有预设到,备课还不够细致。找四边形的普遍特征这一环节,教材中没有给出四边形的定义,所以我让学生仔细观察寻找它们都有什么共同的特点,用自己的语言描述什么样的图形是四边形,并在这个过程中让学生初步感知四边形的特征:有四条边、四个角。此时学生对四边形的特征表象认识是