人教版高中数学必修二圆的方程
“人教版高中数学必修二圆的方程”相关的资料有哪些?“人教版高中数学必修二圆的方程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“人教版高中数学必修二圆的方程”相关范文大全或资料大全,欢迎大家分享。
高中数学必修二《圆的标准方程》优秀教学设计
人教A版必修2
4.1.1 圆的标准方程
1 教学目标
(1)知识与技能
在平面直角坐标系中探索圆的方程,掌握圆的标准方程,会判断点与圆的位置关系,能根据条件求圆的标准方程。
(2)过程与方法
通过设置问题情境,让学生经历从几何到代数,从代数到几何解决问题的过程,强调图形在解决问题中的辅助作用,提高学生分析问题,解决问题的能力。
(3)情感态度价值观
通过对问题的探索,培养学生良好的学习习惯,增强学生主动探究知识、合作交流的意识,使学生获得成功的体验,增强数学学习的兴趣和信心。
2 教学重点
推导圆的标准方程,掌握圆的标准方程
3 教学难点
圆的标准方程的应用,根据不同的条件求圆的标准方程。
4 教材分析
本章在前一章的基础之上,在直角坐标系中建立圆的方程,其本质是用代数的方法研究图形,体现数形结合的重要思想方法,为日后进一步学习圆锥曲线,导数等奠定基础。因此,本章第一节的内容设计紧扣数与形的结合,强调图形在分析问题中的辅助作用,同时也要学会将几何问题代数化,用代数处理几何问题。
5 学情分析
学生已经学习了直线与方程,知道了在平面直角坐标系中直线可以用方程表示,并通过方程研究直线,为本节课做了准备,提供了基础,本节内容仅仅是这个过程的一个延续。本教学设计适合中等水平的学生
高中数学圆的方程典型例题
高中数学圆的方程典型例题
类型一:圆的方程
例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.
例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.
例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件
(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.
类型二:切线方程、切点弦方程、公共弦方程
例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.
例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.
例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
练习:
1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程.
2、过坐标
必修二圆与方程导学案
高二必修二圆与方程导学案
§4.1.1圆的标准方程
1.结合问题导学自已复习课本必修II的P118页至P120页,用红色笔勾画出疑惑点;独立完成探究题,并总结规律方法。
2.针对预习自学及合作探究找出的疑惑点,课上讨论交流,答疑解惑。
3、联想学习直线方程的过程体会用代数的方法研究几何问题的思想,品味解析几何的妙处。
4、教学,重要的不是教师的“教”,而是学生的“学”, 【学习目标】
1.在平面直角坐标系中,探索并掌握圆的标准方程;会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。
2.通过本节的学习,由问题情景入手,我们要学会分析问题的方法;通过自主学习,合作交流,体验探究新知的过程,培养“我参与我快乐”的学习精神。 【重点难点】
重点:圆的标准方程的求法及其应用。
难点:会根据不同的条件,利用待定系数法求圆的标准方程以及选择合适的坐标系解决与圆有关的实际问题。
一【问题导学】 1.在直角坐标系中,确定直线的基本要素是 圆作为平面几何中的基本图形,确定它的要素又是
2.圆定义
3.在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 4.圆心为A
高中数学圆的方程典型例题
高中数学圆的方程典型例题
类型一:圆的方程
例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.
例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.
例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件
(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.
类型二:切线方程、切点弦方程、公共弦方程
例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.
例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.
例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
练习:
1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程.
2、过坐标
人教版高中数学《直线和圆的方程》全部教案
【百度文库】让每个人平等地提升自己!以下内容由李天乐乐精心为您呈现!
直线的倾斜角和斜率
一、教学目标 (一)知识教学点
知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式.
(二)能力训练点
通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力.
(三)学科渗透点
分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想. 二、教材分析
1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线
方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫.
2.难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点.由于以后
还要专门研究曲线与方程,对这一点只需一般介绍就可以了.
3.疑点:是否有继续研究直线方程的必要? 三、活动设计
启发、思考、问答、讨论、练习. 四、教学过程
(一)复习一次函数及其图象
已知一
必修二圆与方程导学案
高二必修二圆与方程导学案
§4.1.1圆的标准方程
1.结合问题导学自已复习课本必修II的P118页至P120页,用红色笔勾画出疑惑点;独立完成探究题,并总结规律方法。
2.针对预习自学及合作探究找出的疑惑点,课上讨论交流,答疑解惑。
3、联想学习直线方程的过程体会用代数的方法研究几何问题的思想,品味解析几何的妙处。
4、教学,重要的不是教师的“教”,而是学生的“学”, 【学习目标】
1.在平面直角坐标系中,探索并掌握圆的标准方程;会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。
2.通过本节的学习,由问题情景入手,我们要学会分析问题的方法;通过自主学习,合作交流,体验探究新知的过程,培养“我参与我快乐”的学习精神。 【重点难点】
重点:圆的标准方程的求法及其应用。
难点:会根据不同的条件,利用待定系数法求圆的标准方程以及选择合适的坐标系解决与圆有关的实际问题。
一【问题导学】 1.在直角坐标系中,确定直线的基本要素是 圆作为平面几何中的基本图形,确定它的要素又是
2.圆定义
3.在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 4.圆心为A
高中数学必修2《圆与方程》知识点讲义
第四章 圆与方程
一、圆的标准方程
(x?a)?(y?b)?r222特殊:x2?y2?r2
点M(x0,y0)与圆(x?a)2+(y?b)2=r2的关系的判断方法:(1)(x0?a)2+(y0?b)2?r2,点在圆外.(2)(x0?a)2+(y0?b)2=r2,点在圆上.(3)(x0?a)2+(y0?b)2?r2,点在圆内.
二、圆的一般方程
x?y?Dx?Ey?F?0(其中D?E?4F?0)2222?1、x2和y2的系数相同,不为0.??2、没有xy这样的项.
D2E2D2?E2?4F圆的一般方程????标准方程:(x?)+(y?)=224
配方DE可知圆心为(-,?),半径r?22
D2?E2?4F2
三、直线与圆的位置关系
1、代数法??0相交Ax?By?C?0???一元二次方程??2??0相切2?x?y?Dx?Ey?F?0??0相离?
2、几何法?相交????圆心到直线的距离d??半径r?相切?????相离
说明:几何法比代数法更简便。
四、圆的切线
1、求过圆O上一点P(x0,y0)的切线l的方法:步骤:1、求kop;2、由kop?kl=-1,求出kl;3、用点斜式:y?y0?kl(x?x0),得出切线方程.
2、求过圆O外一点P
高中数学必修二《直线与方程及圆与方程》测试题-及答案
直线方程 一选择题
1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为( )
A.3 B.-2 C. 2 D. 不存在 2.过点(?1,3)且平行于直线x?2y?3?0的直线方程为( )
A.x?2y?7?0 B.2x?y?1?0 C.x?2y?5?0 D.2x?y?5?0 3. 在同一直角坐标系中,表示直线y?ax与y?x?a正确的是( )
y y y y O x O x O x O x A B C D 4.若直线x+ay+2=0和2x+3y+1=0互相垂直,则a=( )
A.?2233 B.3 C.?2
D.
32 5.直线l与两直线y?1和x?y?7?0分别交于A,B两点,若线段AB的中点为M(1,?1),则直线l的斜率为(A.
32 B.2323 C.?2 D. ?3
6、若图中的直线L1、L2、L3的斜率分别为K1、K2、K3则( ) A、KL 31﹤K2﹤K3
B、KKL2 2
人教版高中数学必修二教案2
新课标高中数学必修2教案
目 录
第一章:空间几何体............................................................................................................................. 1
1.2.1 空间几何体的三视图(1课时) ........................................................................................................ 3 1.2.2 空间几何体的直观图(1课时) ........................................................................................................ 5 1.3.1柱体、锥体、台体的表面积与体积................................................................................................
高中数学同步题库含详解21圆的方程
高中数学同步题库含详解21圆的方程
一、选择题(共40小题;共200分)
1. 已知 ?? ?2,0 ,?? 2,0 ,则以 ???? 为直径的圆的方程是 ??
A. ??2+??2=2 A. ??+???1=0 经过 ??
A. 第一 、二象限
B. 第二、三象限
C. 第三、四象限
D. 第一 、四象限
4. 方程 ??2+??2+2???4???6=0 表示的图形是 ??
A. 以 1,?2 为圆心, 11 为半径的圆 B. 以 1,2 为圆心, 11 为半径的圆 C. 以 ?1,?2 为圆心, 11 为半径的圆 D. 以 ?1,2 为圆心, 11 为半径的圆
5. 圆 ??2+??2+????+????+??=0 ??2+??2?4??>0 的圆心坐标与半径分别为
A. 2,2 , ??2+??2?4?? C. ?,? , ??2+??2?4?? 22A. 1 ??
A. ??? +??2=
2
3232
25425
??
??
????
B. ??2+??2=1 B. ??+??+3=0
C. ??2+??2=3 C. ?????+1=0
D. ??2+??2=4 D.