对弧长的曲线积分怎么求

“对弧长的曲线积分怎么求”相关的资料有哪些?“对弧长的曲线积分怎么求”相关的范文有哪些?怎么写?下面是小编为您精心整理的“对弧长的曲线积分怎么求”相关范文大全或资料大全,欢迎大家分享。

11.1对弧长的曲线积分

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

同济 高等数学 精品课

课程名称 《高等数学》

同济 高等数学 精品课

第11章 曲线积分与曲面积分curvillnear integral and surface integral

同济 高等数学 精品课

第一节

第一类曲线积分

问题的提出对弧长的曲线积分的概念 对弧长的曲线积分的计算

几何意义与物理意义小结 思考题 作业3

第十章 曲线积分与曲面积分

同济 高等数学 精品课

对弧长的曲线积分

一、问题的提出实例 曲线形构件的质量 匀质之质量 M s 分割 M1 , M 2 , , M n 1OA

By

L( i , i ) M iM1 M 2

M n 1

M i 1

si

取近似 取 ( i , i ) si , M i ( i , i ) si

x

求和

M ( i , i ) sii 1 n

n

近似值精确值4

取极限 M lim ( i , i ) si 0i 1

同济 高等数学 精品课

对弧长的曲线积分

二、对弧长的曲线积分的概念设L为 xOy面内一条光滑曲线弧, ① 函数 f ( x , y ) 在L上有界. 在L上任意插入一点列M1 , M 2 , , M n 1

1.定

利用Origin9.0对曲线在指定区间进行积分求面积

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

如何对曲线在指定区间进行积分

在数据分析过程中,有时需要求曲线特定区间的积分。例如,求下图横坐标12-18之间的积分值。

1.选中曲线,进入Analysis下的Mathmatics,点击Integrate。

1

2.依次点开Input、Range前的+号,即可看到积分对应的数据(红色矩形框内)。

在此,是对X轴的指定段12-18求积分;因此点击Rows后面的下拉框,选择By X。 All指全段积分;

By Row指按照Workbook中指定行的范围积分;

By X指按照图中X轴的范围积分;

2

3.在Input-Range-Rows下的From和To中填写区间范围12-18。点击OK按钮即可获取积分值。

3

4.积分结果会在Results Log中显示,约为2076;

对应的积分范围见下图。

4

注意:曲线在X值为12和18处的点不在同一基线上,如需要以12和18处两点的连线作基线计算积分,请按后面的方法操作。

5.同样选中曲线,进入Analysis下的Mathmatics,点击Integrate下的Open Dialog (以前使用过积分功能的话,则会出现Open Dialog)。

5

6.同上选择By X,填写区间12-18。然后勾选“Use End Points Str

曲线积分的计算法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

曲线积分的计算法

1. 基本方法 曲线积分 第一类 ( 对弧长 )

第二类 ( 对坐标 )

用参数方程

(1) 选择积分变量 用直角坐标方程

用极坐标方程

???转化

定积分

(2) 确定积分上下限 定理

设f(x,y)在曲线弧L的参数方程为?x??(t),??y??(t),?第一类: 下小上大 第二类: 下始上终

对弧长曲线积分的计算

L上有定义且连续(??t??)其中,且,?(t),?(t)在[?,?]上具有一阶连续导数?Lf(x,y)ds???22f[?(t),?(t)]??(t)???(t)dt(???)注意:

1.定积分的下限?一定要小于上限?;.2.f(x,y)中x,y不彼此独立,而是相互有关的特殊情形

(1)L:y??(x)a?x?b.b2f[x,?(x)]1???(x)dx.?Lf(x,y)ds???a(2)L:x??(y)c?y?d.d?Lf(x,y)ds?cf[?(y),y]1???(y)dy.2

例1

求I???L?x?acost,xyds,L:椭圆?(第?象限).?y?bsint,22I??20acost?bsint(?asint)?(bcost)dt??ab?2sintcostasint?bcostdt

弧长与扇形面积说课稿

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

弧长和扇形面积说课稿

尊敬的各位评委,老师:大家好!

我是xx号考生,今天我说课的题目是《弧长和扇形面积》,内容是选自人教版初中数学九年级上册第24章第4节。下面我将从教材、教法学法、教学过程,板书设计等几个方面来加以说明。

一、教材的地位和作用

本节是初中数学的重要内容之一,这是学生已经学习了圆的周长及面积,对弧长和面积已经有了初步的认识的基础上,对圆知识的进一步深入和拓展,在今后的解题及几何证明中,将起到重要作用。 二、教学目标、重点难点分析

在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:

知识目标:了解扇形的概念,理解n0的圆心角所对的弧长、扇形面积以及圆锥面积的计算公式并熟练掌握。

技能目标:通过本节课的学习,培养学生 观察分析、类比归纳的探究能力,加深对数形结合、从特殊到一般等数学思想的认识。

情感目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

通过上面对教材内容的分析以及教学目标的设定,我确定本节课的教学重难点如下:

1

重点:由圆

重积分、曲线积分、曲面积分

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

补充内容 一.二重积分

定义:设D为xy平面上的有界闭区域,f(x,y)为定义在D上的函数。用任意的曲线把D分成n个小区域?1,?2,??n. 以??i表示小区域的面积,这些小区域构成D的一个分割T, 以di表示小区域?i的直径,称T?maxdi为分割T的细度。在每个?i上任取一点

1?i?nn(?i,?i),作和式?f(?i,?i)??i,称它为函数f(x,y)在D上属于分割T的一个积分和。

i?1如果

n lim?f?(i?,i?)?i

T?0i?1存在,则称f(x,y)在D上可积,此极限值就称为f(x,y)在D上的积分,记为

??Df(x,y)d?,即

n

??Df(x,y)?d?T?0li?mi?1f?i(?i?,?)i。

定理:有界闭区域上的连续函数必可积。

性质:1. 若f(x,y)在区域D上可积,k为常数,则kf(x,y)在D上也可积,且

??Dkf(x,yd)??k??fx(y,d?)

D 2. 若f(x,y),g(x,y)在D上都可积,则f(x,y)?g(x,y)在D上也可积,且

??[fD(x,y

曲线积分与曲面积分

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

高等数学

六、选择题(共 10 小题,)

1、

2、

3、设OM是从O(0,0)到M(1,1)的直线段,则与曲线积分I x2 y2

OM

e

ds不

相等的积分是

(A)

1

x

e

2dx (B)

1

y

0e

22dy

(C)

2

erdr

(D)

1

r0

e2dr

答( ) 4、L为从A(0,0)到B(4,3)的直径,则 L

(x y)ds

(A) 4

0(x 3

4

x)dx (B)

4

30

(x

4x) 916

dx (C)

3

(

4

3

y y)dy

(D)

3

(

493y y) 16

dy

答:( )

5、C为y x2上从点(0,0)到(1,1)的一段弧。则I

L

yds ______________。(A)

1

0 4x2dx (B)

1

y ydy (C)

1

x 4x2dx

(D)

1

1

y

y

dy

答:( )

6、

7、设L为下半圆周 . 将曲线积分 化为定积分的正确结果是

8、设L是圆周 x2+y2=a2 (a>0)负向一周,则曲线积分

答 ( )

2xdx ydy

9、设L是 |y|=1-x2表示的围线的正向,则 22L2x y

(A) 0. (C) 2 . (B) 2π. (D) 4ln2.

答 ( )

10、若是某二元函数的全微分,则a,

曲线积分曲面积分总结

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

第十三章 曲线积分与曲面积分

定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分.

第一节 对弧长的曲线积分

一、 对弧长的曲线积分的概念与性质

在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为y?f?x?,x??a,b?,其上每一点的密度为??x,y?.

如图13-1我们可以将物体分为n段,分点为

M1,M2,...,Mn, 每一小弧段的长度分别是?s1,?s2,...,?sn.取其中的一小段弧Mi?1Mi来分

图13-1

析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点

??i

弧长和扇形面积说课稿

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

《弧长和扇形面积》第一课时说课稿

龙门县实验学校 梁艳芬

尊敬的评委、领导、老师:

大家好!我要说的课题是《弧长和扇形面积》第一课时。根据新课标理念,我将从教材分析、教法设计、学法指导、教学过程和效果预测五个方面加以说明。

先看教材分析: 一、教材分析 1.教材地位和作用

本节内容选自义务教育课程标准实验教科书、人教版九年级数学上册第24章第4节第110-111的内容,它是圆周长与面积的拓展和延伸,也是学习圆锥侧面展开图的基础,且对动态问题的学习将起到重要的铺垫作用。 2.学情分析

由于我班的数学基本功相对较薄弱,接受新知识的能力较困难,特别是逻辑思维论证有欠严谨,遗忘旧知识明显。因此我把本课内容重组为先复习圆周长与面积,接着认识扇形,再推导公式,最后是巩固公式。暂时避开求阴影部分的面积,让学生重新树立学好数学的信心。 3.重难点

我结合新课标要求,以学生发展为核心的理念下确定了本课的重点是弧长和扇形面积公式的推导。由于公式刚接触,学生对公式的选择还不够灵活,导致计算量超大,所以本课的难点确定为弧长和扇形面积公式的灵活选用。 4.教学目标

根据新课程标准,教学目标应包括三维。因此,本课的三维

求曲线轨迹方程的常用方法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

高考数学专题:求曲线轨迹方程的常用方法

张昕

陕西省潼关县潼关高级中学 714399

求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1) 直接法:直接法就是将动点满足的几何条件或者等量关系,直

接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质.

(2) 定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、

双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定义法求方程要善于抓住曲线的定义特征.

(3) 代入法:根据相关点所满足的方程,通过转换而求动点的轨迹

方程.这就叫代入法.

(4) 参数法:若动点的坐标(x,y)中的x,y分别随另一变量的

变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程.

(5) 几何法:根据曲线的某种几何性质和特征,通过推理列

曲线积分与曲面积分

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

第十章 曲线积分与曲面积分参考答案

第十章 曲线积分与曲面积分答案

一、选择题 1.曲线积分

?x??f(x)?e?sinydx?f(x)cosydy与路径无关,其中f(x)有一阶连续偏导?L数,且f(0)?0,则f(x)? B

A.

1(e?x?ex) B. 1(ex?e?x) C. 1(ex222?e?x) D.0 2.闭曲线C为x?y?1的正向,则

C??ydx?xdyx?y? C

A.0 B.2 C.4 D.6 3.闭曲线C为4x2?y2?1的正向,则

?ydx?xdy2C?4x2?y? D

A.?2? B. 2? C.0 D. ?

4.?为YOZ平面上y2?z2?1,则

??(x2?y2?z2)ds? D

?A.0 B.

? C. 1? D. 142?

5.设C:x2?y2?a2,则?(x2?y2)ds? C

CA.2?a2 B. ?a2 C. 2?a3 D. 4?a3 6. 设?为球面x2?y2?z2?1