小学数学的模型思想有哪些
“小学数学的模型思想有哪些”相关的资料有哪些?“小学数学的模型思想有哪些”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学数学的模型思想有哪些”相关范文大全或资料大全,欢迎大家分享。
小学数学思想方法有哪些
小学数学思想方法有哪些?
《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验.
“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想. 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果.在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳.之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别.每一个具体的方法可能是重要的,但它们是个案,不具有一般性.作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了.这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法.
史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论.我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力.而这正是归纳推理的能力.
就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容.与演绎推理相反,归纳推理是一种“从特殊到一般的推理”.
借助归纳推理可以培养学生“预测结果”和“
小学数学教学中渗透模型思想的策略
楚雄师范学院毕业论文(设计)
小学数学教学中渗透模型思想的策略
罗玉珍
(楚雄师范学院 2013级小学教育专业1班 20130126136)
摘要:模型思想是近年来新提出的一个理念,它主要就是要让学生把生活实际和数学联系起
来。模型思想便是将现实中的问题用数的形式表示出来且用数学的方式进行解答。小学是培养孩子模型思想的第一个阶段,所以教师在培养过程中要使用适当的方式和策略。本文主要就在小学数学课堂中怎样培养模型思想的策略做了简单的论述。对相关的概念做了叙述,对小学课本中重要的模型思想做了简述。对教师处理含有模型思想的案例做了简单解析。
关键词:小学数学;模型思想;培养;策略
I
楚雄师范学院毕业论文(设计)
The strategy of infiltrating model thinking in primary
school mathematics teaching
Abstract:The idea of model is a new concept put forward in recent years, it is mainly to let the
students to the actual life and mathemati
小学数学思想方法有哪些
小学数学思想方法有哪些?
《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验.
“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想. 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果.在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳.之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别.每一个具体的方法可能是重要的,但它们是个案,不具有一般性.作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了.这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法.
史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论.我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力.而这正是归纳推理的能力.
就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容.与演绎推理相反,归纳推理是一种“从特殊到一般的推理”.
借助归纳推理可以培养学生“预测结果”和“
小学数学思想方法的梳理
小学数学思想方法的梳理(一) 王永春(课程教材研究所)
数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。
《数学课程标准》在总体目标中明确提出:“学生能获得适应未来的社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。”这一总体目标贯穿于小学和初中,这充分说明了数学思想方法的重要性。在小学阶段有意识地向学生渗透一些基本的数学思想方法可以加深学生对数学概念、公式、法则、定律的理解,提高学生解决问题的能力和思维能力,也是小学数学进行素质教育的真正内涵之所在。同时,也能为初中数学思想方法的学习打下较好的基础。在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一一对应思想、模型思想、数性结合思想、演绎推理思想、变换思想、统计与概率思想等等。
为了使广大小学数学教师在教学中能很好地渗透
转化思想在小学数学中的应用
转化思想在小学数学中的应用杨摘要
茜
(河南省洛阳市实验小学河南 洛阳 4 7 1 0 0 1 )辩证唯物主义认为,事物之间是普遍联系的,又是可以相互转化的。新数学课程标准提出的总体目标之一, 就是让学生“获得适应未来社会生活和继续学习所必需的数学基本知识及基本的数学思想方法”。小学数学中的转化思想,渗透于各类知识之中,在教学的各个阶段都起重要的作用。同时,转化思想是数学思想的核心和精髓,是数学思
想的灵魂。因此,要使学生获得必要的数学思想方法,首先应加强转化思想的训练和培养。关键词小学数学转化思想训练文献标识码: A升,这个铁块的体积就是多少立方厘米。方法四:可以请铁匠师傅帮个忙,让他敲打成一个规则的长方体后再计算。 这时,学生在转化思想的影响下,茅塞顿开,将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出: 学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。 3化曲为直,突破空间障碍“化曲为直”的转化思想是小学数学曲面图形面积学习的主要思想方法。它可以把学生的思维空间引向更宽更广的层次,形成一个开放的思维空间,为学生今后的发展打下坚实的基础。
中图分类号: G6 2 3 . 5
小学数学思想方法
小学毕业生数学学习材料(二)
小学数学思想方法
小学数学是一门基础学科。小学数学中不仅包括了大量的数学基础知识,而且在学习和运用这些数学知识的过程中,还以潜移默化的方式渗透了一些重要的数学思想方法。本讲义从较高的视点出发,对已有的关于数学思想方法零散而模糊的感性认识,进行科学地、系统地概括,结合一些经过精选的数学竞赛题目,进行深入细致的讲解,并且安排了必要的和适量的练习,力求通过学习,对一些常用的数学思想方法和技巧能够明确认识,融会贯通,以提高数学思维能力和解题能力,为更好地为适应初中数学的学习打下良好的基础。
第一讲 从简单情况找规律
当一个问题非常复杂时,首先就要想到,其中是否隐藏着某种规律,如果能找到这种规律,问题就会迎刃而解。探索规律,往往要利用已有的知识和经验,从简单的、熟悉的地方开始,从粗略的估计开始,同时注意极端的情况,如最大、最小等。
例1 1995个7连乘,积的个位数字是多少?(北京市“迎春杯”数学竞赛题)
解:71=7,个位数字是7;72=49,积的个位数字是9;73=343,积的个位数字是3;74=2401,积的个位数字是1;75=16807,积的个位数字是7。 观察发现,随着因数的增加,积的个位数字按“7
例谈小学数学转化思想的渗透
龙源期刊网 http://www.qikan.com.cn
例谈小学数学转化思想的渗透
作者:庄晶晶
来源:《广西教育·A版》2014年第02期
【关键词】转化思想 小学数学 渗透 【中图分类号】G 【文献标识码】A 【文章编号】0450-9889(2014)02A- 0032-01
转化思想是解决数学问题的根本思想。何为“转化思想”?就是通过观察、类比、联想等思维过程,将原问题转化为一个新问题的求解,达到解决原问题的目的。数学问题的解决都可以通过转化来实现,在小学数学教学中,教师要善于引导学生使用转化的思想方法,提高思维的灵活性,提高学生解决问题的能力。 一、在知识学习中善用类比,实现转化
类比方法通过对两个研究对象的比较,根据其相似点推理出未知对象的相似点,这是新旧知识转化过程中最有效的推理方法。教学时,适时运用类比方法进行转化,可使陌生的问题转化为熟悉的问题,有利于学生更好地掌握新知识,巩固旧知识。如,在教学人教版五年级数学上册《平行四边形的面积》时,笔者先引导学生将平行四边形与长方形做类比:如何将平行四边形转化为长方形?学生
转化思想在小学数学中的应用
转化思想在小学数学中的应用杨摘要
茜
(河南省洛阳市实验小学河南 洛阳 4 7 1 0 0 1 )辩证唯物主义认为,事物之间是普遍联系的,又是可以相互转化的。新数学课程标准提出的总体目标之一, 就是让学生“获得适应未来社会生活和继续学习所必需的数学基本知识及基本的数学思想方法”。小学数学中的转化思想,渗透于各类知识之中,在教学的各个阶段都起重要的作用。同时,转化思想是数学思想的核心和精髓,是数学思
想的灵魂。因此,要使学生获得必要的数学思想方法,首先应加强转化思想的训练和培养。关键词小学数学转化思想训练文献标识码: A升,这个铁块的体积就是多少立方厘米。方法四:可以请铁匠师傅帮个忙,让他敲打成一个规则的长方体后再计算。 这时,学生在转化思想的影响下,茅塞顿开,将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出: 学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。 3化曲为直,突破空间障碍“化曲为直”的转化思想是小学数学曲面图形面积学习的主要思想方法。它可以把学生的思维空间引向更宽更广的层次,形成一个开放的思维空间,为学生今后的发展打下坚实的基础。
中图分类号: G6 2 3 . 5
小学数学思想方法的梳理(七)
小学数学思想方法的梳理(七)
七、分类讨论思想
1.分类讨论思想的概念。 人们面对比较复杂的问题,有时无法通过统一研究或者整体研究解决,需要把研究的对象按照一定的标准进行分类并逐类进行讨论,再把每一类的结论综合,使问题得到解决,这种解决问题的思想方法就是分类讨论的思想方法。其实质是把问题“分而治之、各个击破、综合归纳”。其分类规则和解题步骤是:(1)根据研究的需要确定同一分类标准;(2)恰当地对研究对象进行分类,分类后的所有子项之间既不能“交叉”也不能“从属”,而且所有子项的外延之和必须与被分类的对象的外延相等,通俗的说就是要做到“既不重复又不遗漏”;(3)逐类逐级进行讨论;(4)综合概括、归纳得出最后结论。
分类讨论既是解决问题的一般的思想方法,适应于各种科学的研究;同时也是数学领域问题较常用的思想方法。
2.分类讨论思想的重要意义。 《课程标准》在总目标中要求学生能够有条理地思考,这种有条理性的思考就是一种有顺序的、有层次的、全面的、有逻辑性的思考,分类讨论就是具有这些特殊的思考方法。因此,分类讨论思想是培养学生有条理地思考和良好数学思维品质的一种重要而有效的方法。无论是解决纯数学问题,还是解决联系实际的问题,都要注意数学原理、公式和方法
数学建模思想在小学数学教学中的应用
龙源期刊网 http://www.qikan.com.cn
数学建模思想在小学数学教学中的应用
作者:王海燕
来源:《课程教育研究》2018年第17期
【摘要】小学数学与其他课程相比,本身有着逻辑性、思维性等要求,因此对小学生要求较高。建模思想作为一种重要的数学思想,在实际中有着广泛应用。本文中详细分析小学数学教学中数学建模思想的应用。
【关键词】小学数学 建模思想 应用分析
【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2018)17-0131-02 小学课堂教学中数学扮演着重要角色,借助建模思想可以让教师更加合理的讲解数学理论,同时也能让学生更加容易的接收数学知识,因此在小学数学教学中引入建模思想有着重要意义。
1.小学数学教学分析
虽然素质教育提出很多年,但传统应试教育的影响犹在,部分学生数学学习中不善于总结数学学习技巧与规律,普遍存在死记硬背的情况。大部分小学生数学学习依赖于教师灌输,自身很少主动思考问题,不利于培养学生逻辑思维能力。如加减乘除运算学习中,各类公式转换复杂,如果不进行深入思考,单纯依靠死记硬背