求椭圆的轨迹方程常用方法
“求椭圆的轨迹方程常用方法”相关的资料有哪些?“求椭圆的轨迹方程常用方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“求椭圆的轨迹方程常用方法”相关范文大全或资料大全,欢迎大家分享。
求曲线轨迹方程的常用方法
高考数学专题:求曲线轨迹方程的常用方法
张昕
陕西省潼关县潼关高级中学 714399
求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1) 直接法:直接法就是将动点满足的几何条件或者等量关系,直
接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质.
(2) 定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、
双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定义法求方程要善于抓住曲线的定义特征.
(3) 代入法:根据相关点所满足的方程,通过转换而求动点的轨迹
方程.这就叫代入法.
(4) 参数法:若动点的坐标(x,y)中的x,y分别随另一变量的
变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程.
(5) 几何法:根据曲线的某种几何性质和特征,通过推理列
2.1.2求动点的轨迹方程常用方法
2.1.2求曲线的方程 (求动点的轨迹方程)
上一节,我们已经建立了曲线的方程.方程 的曲线的概念.利用这两个重要概念,就可以借 助于坐标系,用坐标表示点,把曲线看成满足 某种条件的点的集合或轨迹,用曲线上点的坐 标(x,y)所满足的方程f(x,y)=0表示曲线,通 过研究方程的性质间接地来研究曲线的性质.这 就是我们反复提到的坐标法。
上一节,我们已经建立了曲线的方程.方程 的曲线的概念.利用这两个重要概念,就可以借 助于坐标系,用坐标表示点,把曲线看成满足 某种条件的点的集合或轨迹,用曲线上点的坐 标(x,y)所满足的方程f(x,y)=0表示曲线,通 过研究方程的性质间接地来研究曲线的性质.这 就是我们反复提到的坐标法。
点M
按某中规律运动几何意义
曲线C
坐标(x, y )
x, y的制约条件
“数形结合” 数学思想的 基础
代数意义
方程f ( x, y) 0
数学中,用坐标法研究几何图形的知识形 成的学科叫做解析几何。解析几何主要研究的 问题是: (1)根据已知条件,求出表示曲线的方程; (2)通过曲线的方程,研究曲线的性质。
例1.设A、B两点的坐标是(-1,-1),(3,7), 求线段AB的垂直平分线的方程.
例1.设A、B两点的坐标是(-1,-1
求不定方程整数解的常用方法
求不定方程整数解的常用方法
摘要:不定方程,是指未知数的个数多于方程的个数,且未知数受到某些限制的方程或方程组.因此,要求一个不定方程的全部的解,是相当困难的,有时甚至是不可能或不现实的.本文利用变量替换、未知数之间的关系、韦达定理、整除性、求根公式、判别式、因式分解等有关理论,求得一类不定方程的正整数解.通过一些具体的例子,给出了常用的不定方程的解法,分别为分离整数法、辗转相除法、不等式估值法、逐渐减小系数法、分离常数项的方法、奇偶性分析法、换元法、构造法、配方法、韦达定理、整除性分析法、利用求根公式、判别式、因式分解法等等.
关键字:不定方程;整数解;整除性
1引言
不定方程是数论的一个分支,有悠久的历史与丰富的内容,与其他数学领域有密切联系,是数论中的重要的、活跃的研究课题之一,我国对不定方程的研究以延续了数千年,“百钱百鸡问题”等一直流传至今,“物不知其数”的解法被称为中国剩余定理,学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学的解题技能.
中学阶段是学生的思维能力迅猛发展的关键阶段.在此阶段要注重培养学生的思维能力,开发学生智力,因此对于初等数论的一般方法、理论有一定的了解是必不可少的.让学生做题讲究
求轨迹方程的十种技法
篇一:高中数学求轨迹方程的六种常用技法
求轨迹方程的六种常用技法
轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法
根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段AB?6,直线AM,BM相交于M,且它们的斜率之积是
4
,求点M 的轨迹方程。 9
解:以AB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则A(?3,0),B(3,0),设点M的坐标为(x,y),则直线AM的斜率kAM?
yy(x??3),直线BM的斜率kAM?(x?3) 由已知有x?3x?3
yy4
??(x??3) x?3x?39
x2y2
化简,整理得点M的轨迹方程为??1(x??3)
94
练习:1.平面内动点P到点F(10,0)的距离与到直线x?4的距离之比为2,
求轨迹方程的十种技法
篇一:高中数学求轨迹方程的六种常用技法
求轨迹方程的六种常用技法
轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法
根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段AB?6,直线AM,BM相交于M,且它们的斜率之积是
4
,求点M 的轨迹方程。 9
解:以AB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则A(?3,0),B(3,0),设点M的坐标为(x,y),则直线AM的斜率kAM?
yy(x??3),直线BM的斜率kAM?(x?3) 由已知有x?3x?3
yy4
??(x??3) x?3x?39
x2y2
化简,整理得点M的轨迹方程为??1(x??3)
94
练习:1.平面内动点P到点F(10,0)的距离与到直线x?4的距离之比为2,
力学求极值常用方法
一.运用二次函数求极值(顶点坐标法,配方法,判别式法)三种方法等效,适用于有二次函数的式子。
顶点坐标法对于典型的一元二次函数y?ax2?bx?c,
b4ac?b2若a?0,则当x??时,y有极小值,为ymin?;
2a4ab4ac?b2若a?0,则当x??时,y有极大值,为ymax?;
2a4a例1.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s的加速度开始行驶。恰在这时一辆自行车以6m/s的速度匀速驶来,从后边赶过汽车。汽车从路口开动后,在追上自行车之前过多长时间两车相距最远?此时距离是多少?
解:经过时间t后,自行车做匀速运动,其位移为S1?Vt, 汽车做匀加速运动,其位移为:S2?12at 22
1232?S?S?S?Vt?at?6t?t 两车相距为:1222这是一个关于t的二次函数,因二次项系数为负值,故ΔS有最大值。 当t???Sm?b?6??2(s)时,?S有最大值 2a2?(?3/2)4ac?b24a?0?624?(?3/2)?6(m)
二.利用三角函数求极值
如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解。若所求物理量表达式可化为“y=Asin?cos?”的形式,则y=Asin2α,在?=45o时,y有极值
椭圆的标准方程
中学数学 高中二年级上学期第6课
椭圆-1主讲人
官琪
北京市第九中学
如何研究椭圆
如何研究椭圆(1)由椭圆曲线求它的方程
如何研究椭圆(1)由椭圆曲线求它的方程 (2)利用方程研究椭圆的性质
实验:绘制椭圆
实验:绘制椭圆将一条没有弹性的细绳的两端 拉开一段距离,分别固定在图板上 不同的两点 处,并用笔尖拉 紧绳子,再移动笔尖一周,这时笔 尖画出的轨迹是什么图形呢?
F1
F2
实验思考
实验思考(1)如果调整细绳两端的相对位 置,细绳的长度不变,猜想轨迹会 发生怎样的变化?
实验思考(2)如果调整细绳的长度,细绳 两端的相对位置不变,猜想轨迹会 发生怎样的变化?
实验思考(3)细绳两端的距离与绳长等于 或大于绳长,画出的图形还是椭 圆吗?还能画出图形吗?
关于求圆锥曲线方程的方法
关于求圆锥曲线方程的方法 重难点归纳
一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤
定形——指的是二次曲线的焦点位置与对称轴的位置
定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0)
定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小
C' 典型题例示范讲解 18 m C 例1某电厂冷却塔的外形是如图所示的双曲线的一部
20 m 分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A' 14 m A A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端
点,B、B′是下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m 建立坐标系并写出22 m B B' 该双曲线方程
命题意图 本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力
知识依托 待定系数法求曲线方程;点在曲线上,点的坐标适合方程;积分法求体积
错解分析 建立恰当的坐标系是解决本题的关键 技巧与方法
求函数的定义域与值域的常用方法
函数的定义域与值域的常用方法
一. 教学内容:
求函数的定义域与值域的常用方法
求函数的解析式,求函数的定义域,求函数的值域,求函数的最值
二. 学习目标
1、进一步理解函数的定义域与值域的概念; 2、会应用代换、方程思想求简单的函数解析式;
3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值;
4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用;
5、会求实际问题中的函数解析式、定义域、值域和最值问题; 6、会用集合、区间或不等式表示函数的定义域和值域。
三. 知识要点
(一)求函数的解析式
1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有:
(1)直接法:根据题所给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值
椭圆及其标准方程
第一节 椭圆
1.椭圆的定义
(1) 第一定义:|PF1|?|PF2|?2a(2a?|F1F2|) (F1,F2为焦点,|F1F2|?2c为焦距) 注:①当2a=|F1F2|时,P点的轨迹是 .
②当2a<|F1F2|时,P点的轨迹不存在.
(2)第二定义:
|PF|d?e,(0?e?1)
注:第二定义中焦点与准线应对应
2.椭圆的标准方程(中心在原点,对称轴为坐标原点)(1) 焦点在x轴上,中心在原点的椭圆标准方程是:(2) 焦点在y轴上,中心在原点的椭圆标准方程是
yaxa2222?xbyb2222?1,其中( > >0,且a2? )
??1,其中a,b满足: .
说明:(1)焦点在x2,y2分母大的对应的坐标轴上; (2)a2?b2?c2及a,b,c的几何意义 (3)标准方程的统一形式:mx2?ny2?1(m?0,n?0,m?n)
适用于焦点位置未知的情形
?x?acos? (4)参数方程:??y?bsin?3.椭圆的几何性质(对(1) (2) (3) (4)
xa2