人脸活体检测算法

“人脸活体检测算法”相关的资料有哪些?“人脸活体检测算法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“人脸活体检测算法”相关范文大全或资料大全,欢迎大家分享。

基于MB-LBP人脸检测算法

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

基于MB-LBP人脸检测算法

张伦,楚如峰,向世明,廖胜才,斯坦·李

生物识别与安全技术研究中心,中国科学院自动化模式识别研究所,国家重点实验室

摘要

通过使用基于AdaBoost学习算法的矩阵Haar-like特征方法,有效和实时脸部检测已经成为可能。在本文中,我们介绍了一组新的独特的人脸检测矩阵特征方法,称为多块局部二值模式(MB-LBP)。通过局部二进制模式操作,MB-LBP将矩阵区域编码成强度,得到的二值模式可以描述图像的多种局部结构。基于MB-LBP特征,研究出了一种基于AdaBoost学习算法的人脸检测方法。为了处理MB-LBP特征的非度量特征值,算法采用多分支回归树作为弱分类。实验表明,基于MB-LBP弱分类比Haar特征和原始LBP特征更加有区别度。鉴于相同的许多特征,在一个给定的0.001误报率下,所提出的人脸检测比haar-like特征高15%的正确率,比原始LBP特征高8%的正确率。这表明,MB-LBP特征可以捕获更多的图像结构信息,同时在简单地测量矩阵之间的差异下,比传统haar-like特征有更突出的性能。MB-LBP特征的另一优点是其较小的特征集,这使得训练时间要少得多。

1引言

人脸检测具有广泛的应用,例如自动

任务书-活体检测

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

照片人脸活体检测方法研究

一、原始依据

人脸识别是利用人的面部特征进行身份识别的一种生物识别技术。该技术逐渐成熟,并且被广泛应用,但容易用照片、视频等方式伪装人脸,欺骗系统,造成误判,这种对合法用户人脸的假冒行为已经严重侵害了正常用户的合法权益和系统安全。人脸识别的活体检测可以很好地解决这一问题,活体检测通过检测活体与照片视频之前的不同点,从而达到识别活体人脸的要求,主要方法有微纹理检测、动态信息检测、三维模型检测等。对于重要场所的门禁、远程识别和在线身份认证等方面都有重要应用,因此人脸识别活体检测成为了现今科研研究的重要方向。

本毕业设计课题旨在通过研究活体人脸和假冒人脸的特征,采用LBP、小波变换或其他相应方法提取,并采用分类器进行检测。主要通过检测真实人脸照片与二次成像照片在纹理方面的区别,利用LBP(Local Binary Patterns,局部二值模式)方法提取局部特征作为判别依据,从而进行识别,并且使用SVM(Support Vector Machine,支持向量机)进行分类,并用MATLAB实现。

二、参考文献

[1]孙霖.《人脸识别中的活体检测技术研究》.浙江大学,博士论文,2010年

[2]伍世虔.《红外

matlab实现混合高斯模型运动物体检测算法

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

clear all;

Source_Video = VideoReader('viptraffic.avi'); % read the video for processing

Out_Back = VideoWriter('GMM_Background'); Out_Back.FrameRate = 30; open(Out_Back);

Out_Dect = VideoWriter('GMM_Foreground'); Out_Dect.FrameRate = 30; open(Out_Dect);

% ----------------------- 帧尺寸变量 -----------------------

height = Source_Video.Height; width = Source_Video.Width;

% --------------------- 模型变量 -----------------------------------

C = 3; % 混合高斯模型个数(

常见图像边缘检测算法检测

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免的重要因素。正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者正在试图在边缘提取中加入高层的语义信息。

在实际的图像分割中,往往只用到一阶和二阶导数,虽然,原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶的导数操作中就会出现对噪声的敏感现象,三阶以上的导数信息往往失去了应用价值。二阶导数还可以说明灰度突变的类型。在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。二阶导数对噪声也比较敏感,解决的方法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。不过,利用二阶导数信息的算法是基于过零检测的,因此得到的边缘点数比较少,有利于后继的处理和识别工

基音周期检测算法比较

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

本科毕业论文

题 目 语音基音周期检测算法比较 学 院 管理科学与工程学院 专 业 电子信息工程 班 级 081信工(1)班 学 号 200883082 姓 名 周刚 指导老师 段凯宇 讲师

二〇一二 年 六 月

语音基音周期检测算法比较

摘要

基音周期作为语音信号处理中描述激励源的重要参数之一,广泛的应用于语音合成、语音编码和语音识别等语音信号处理等技术领域。准确可靠的对基音周期进行检测将直接影响整个语音处理系统的性能。 常用的基音检测算法对于纯净语音信号都能达到较好的检测效果。然而,实际当中的语音信号不可避免的会受到外界背景噪音的影响,使得这些检测算法的检测效果都不是很理想,为此本文用两种基本算法对语音信号滤波前后进行基音周期检测,在进行比较。

论文首先

SUAUN边缘检测算法性能分析

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

SUSAN边缘检测算法性能分析与比较

类别:电子综合 阅读:1579

1 引 言

边缘是图像最基本的特征,是图像分割的第一步。经典的边缘检测方法如:Roberts,Sobel,Prewitt,Kirsch,Laplace等方法,基本都是对原始图像中象素的小邻域构造边缘检测算子,进行一阶微分或二阶微分运算,求得梯度最大值或二阶导数的过零点,最后选取适当的阀值提取边界。由于这些算法涉及梯度的运算,因此均存在对噪声敏感、计算量大等缺点。在实践中,发现SUSAN算法只基于对周边象素的灰度比较,完全不涉及梯度的运算,因此其抗噪声能力很强,运算量也比较小。并将SUSAN算法用于多类图像的边缘检测中,实验证明该算法非常适合含噪图像的边缘检测。

2 SUSAN边缘检测简介 2.1 SUSAN特征检测原理

如图1所示,用一个圆形模板在图像上移动,若模板内象素的灰度与模板中心象素(称为:核Nucleus)灰度的差值小于一定阀值,则认为该点与核具有相同(或相近)的灰度,由满足这样条件的象素组成的区域称为USAN(Univalue Segment Assimilating Nucleus)。

当圆形模板完全处在图像或背景中时,USA

Harris角点检测算法详解

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

不适用opencv的代码(转)

////////////////////////////////////////////////////////////////////// // Construction/Destruction

////////////////////////////////////////////////////////////////////// #define B(image,x,y) ((uchar *)(image->imageData+image->widthStep*(y)))[(x)*3] #define G(image,x,y) ((uchar *)(image->imageData+image->widthStep*(y)))[(x)*3+1] #define R(image,x,y) ((uchar *)(image->imageData+image->widthStep*(y)))[(x)*3+2] #define S(image,x,y) ((uchar *)(image->imageData+image->widthStep*(y)))[(x)]

//卷积计算求Ix,Iy,以及滤波

//a指向的

Harris角点检测算法详解

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

不适用opencv的代码(转)

////////////////////////////////////////////////////////////////////// // Construction/Destruction

////////////////////////////////////////////////////////////////////// #define B(image,x,y) ((uchar *)(image->imageData+image->widthStep*(y)))[(x)*3] #define G(image,x,y) ((uchar *)(image->imageData+image->widthStep*(y)))[(x)*3+1] #define R(image,x,y) ((uchar *)(image->imageData+image->widthStep*(y)))[(x)*3+2] #define S(image,x,y) ((uchar *)(image->imageData+image->widthStep*(y)))[(x)]

//卷积计算求Ix,Iy,以及滤波

//a指向的

图像边缘检测算法代码7

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

数字图像处理技术课程设计

图像边缘检测

编程实现灰度图像的几种常用的边缘检测算法,包括:梯度边缘检测算法、Roberts边缘检测算法、Sobel边缘检测算法、拉普拉斯边缘检测算法、canny边缘检测算法、Prewitt边缘检测算法和Krisch边缘检测算法。

代码:

头文件:

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ bmpFile.h

#ifndef BMP_FILE_H #define BMP_FILE_H

BYTE *Read8BitBmpFile2Img(const char *filename,int *width,int *height); bool Write8BitImg2BmpFile(BYTE *pImg,int width,int height,const char *filename); BYTE *Read24BitBmpFile2Img(const char *filename,int *width,int *height);

bool Write24BitImg2BmpFile(BYTE *pImg,int

文献综述 基于Adaboost算法的人脸检测

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

文献综述正文范例

基于Adaboost算法的人脸检测

文献综述

一、 人脸检测概述

随着社会的发展,各个方面对快速有效的自动身份验证和识别的要求日益迫切。人脸与人体的其他生物特征(指纹、虹膜等)一样与生俱来,具有很强的个体差异性、自身稳定性、唯一性和不易被复制的良好特性,因而它们为身份鉴别提供了必要的前提;并且同其他生物特征识别技术相比,人脸是一个信息极丰富的模式集合,是人类互相判别、认识、记忆的主要标志[1],人脸识别技术具有操作简单、结果直观、隐蔽性好的优越性,也是近年来模式识别、图像处理、机器视觉、神经网络以及认知科学等领域研究的热点课题之一[2]。

所谓人脸识别,是指给定一个场景的静态图像或动态视频,判断其中是否存在人脸,如果存在人脸则进一步给出每张人脸的位置、大小和各个主要面部器官的位置信息并且依据这些信息进一步提取每张人脸蕴含的身份特征,将其与已知人脸库中的人脸进行对比,从而识别场景中单个或者多个人的身份[3]。

人脸识别过程可分为人脸检测(判断输入图像中是否存在人脸)、人脸特征提取(检测每个人脸的主要器官位置和形状)和人脸识别(将人脸特征提取结果与库中人脸对比)三个阶段。使用Adaboost算法进行人脸识别流程[5] ,如图 1所示。在这一