初中动点问题专题

“初中动点问题专题”相关的资料有哪些?“初中动点问题专题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中动点问题专题”相关范文大全或资料大全,欢迎大家分享。

初中数学动点问题专题复习及答案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

初中数学动点问题练习题

1、(宁夏回族自治区)已知:等边三角形边

ABC的边长为4厘米,长为1厘米的线段MN在△ABC的

AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点BAB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运

MNQP恰为矩形?并求出该矩形的面积;

时运动终止),过点M、N分别作动的时间为t秒.

1、线段MN在运动的过程中,t为何值时,四边形(2)线段MN在运动的过程中,四边形

MNQP的面积为S,运动的时间为t.求四边形MNQP的面

C Q

积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.

2、如图,在梯形

P

A M N

B

ABCD中,AD∥BC,AD?3,DC?5,AB?42,∠B?45?.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒. (1)求BC的长.

(2)当MN∥AB时,求t的值.

(3)试探究:t为何值时,△MNC为等腰三角形.

A D N

B C

M

3、如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点 A的坐标为(6,0),点

专题:动点问题(一)A版

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

专题:动点问题(一)A版

动点问题(一)以三角形为主,初二上学期期末考试难点; 动点问题(二)以四边形为主,有大量的动点问题,初二下学期期中、期末考试难点、热点;(春季课待续) 动点问题(三)为大综合,包含几何与函数的结合,是中考和模拟的热点。 题型一:因动点产生全等三角形问题

(14年门头沟期末改编)如图,已知△ABC中, A点D为AB的中点.

(1) 如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在

线段CA上由C点向A点运动.

① 若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是

否全等,请说明理由;

② 若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,

能够使△BPD与△CQP全等?

(2) 若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,

都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

AC厘米, BC厘米,

BADQPC

题型二: 因动点产生等腰三角形问题

(2013大兴期末)如图,在四边形ABCD中,?DAB?90?,AB=4,AD=3,动点M从D点出发,以每秒1个单位的速度沿DA向终点A运动,同时动点N从A

中考数学动点问题专题讲解

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

动点及动图形的专题复习教案

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.

关键:动中求静.

数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分

初中数学几何的动点问题专题练习-附答案版 - 图文

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

动点问题专题训练

1、如图,已知△ABC中,AB?AC?10厘米,BC?8厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与

A △CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度B 从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

D Q P C 32、直线y??x?6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,

4同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A、B两点的坐标;

(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;

48(3)当S?时,求出点P的坐标,并直接写出以点

5O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

P x y B O Q A

3如图,在平面直角坐标系中,直线l:y=-2x-8

初中数学论文:从“动点问题”谈中考专题复习教学

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

初中数学论文

抛“砖”方能引“玉”

——从“动点问题”谈中考专题复习教学

【摘要】中考数学专题复习,是从某一重要的数学知识、技能或数学方法展开,通过对某些典型的数学问题的剖析,纵向深入,使得学生学习系统、完善、深化。然而在现实的推进中,由于专题复习内容综合性强,能力要求高,学生对此类问题倍感困惑,课堂实效并不理想。笔者有幸参加了温岭市教研室组织的初三复习研讨会,与会老师《动点问题》中考专题复习课给我留下了深刻印象。笔者尝试从这节课的教学设计和课堂应变入手分析,尝试探索中考数学专题复习教学的精髓所在。

【关键词】中考专题 复习教学 动点问题

笔者有幸参加了市教研室组织的初三复习研讨会,聆听了与会老师上的“动点问题”中考专题复习课。应该说,动点问题以几何图形为载体,运动变化为主线,集多个知识点、多种解题方法、数学思想于一身,综合性强,能力要求高,学生对此类问题更是倍感困惑,课堂实效不理想。然而,在实际的教学中,上课教师精心的教学设计和灵活的课堂应变,使得原本枯燥乏味的复习课生机盎然:炒“冷饭”变成了色香味俱全的“蛋炒饭”。原来中考专题复习课可以这样上,我恍然大悟。

一、布“点”为基,做好铺垫——工于开头课生辉 片段回顾1:

课堂伊始,教师开

初中数学论文:从“动点问题”谈中考专题复习教学

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

初中数学论文

抛“砖”方能引“玉”

——从“动点问题”谈中考专题复习教学

【摘要】中考数学专题复习,是从某一重要的数学知识、技能或数学方法展开,通过对某些典型的数学问题的剖析,纵向深入,使得学生学习系统、完善、深化。然而在现实的推进中,由于专题复习内容综合性强,能力要求高,学生对此类问题倍感困惑,课堂实效并不理想。笔者有幸参加了温岭市教研室组织的初三复习研讨会,与会老师《动点问题》中考专题复习课给我留下了深刻印象。笔者尝试从这节课的教学设计和课堂应变入手分析,尝试探索中考数学专题复习教学的精髓所在。

【关键词】中考专题 复习教学 动点问题

笔者有幸参加了市教研室组织的初三复习研讨会,聆听了与会老师上的“动点问题”中考专题复习课。应该说,动点问题以几何图形为载体,运动变化为主线,集多个知识点、多种解题方法、数学思想于一身,综合性强,能力要求高,学生对此类问题更是倍感困惑,课堂实效不理想。然而,在实际的教学中,上课教师精心的教学设计和灵活的课堂应变,使得原本枯燥乏味的复习课生机盎然:炒“冷饭”变成了色香味俱全的“蛋炒饭”。原来中考专题复习课可以这样上,我恍然大悟。

一、布“点”为基,做好铺垫——工于开头课生辉 片段回顾1:

课堂伊始,教师开

初中数学论文:从“动点问题”谈中考专题复习教学

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

初中数学论文

抛“砖”方能引“玉”

——从“动点问题”谈中考专题复习教学

【摘要】中考数学专题复习,是从某一重要的数学知识、技能或数学方法展开,通过对某些典型的数学问题的剖析,纵向深入,使得学生学习系统、完善、深化。然而在现实的推进中,由于专题复习内容综合性强,能力要求高,学生对此类问题倍感困惑,课堂实效并不理想。笔者有幸参加了温岭市教研室组织的初三复习研讨会,与会老师《动点问题》中考专题复习课给我留下了深刻印象。笔者尝试从这节课的教学设计和课堂应变入手分析,尝试探索中考数学专题复习教学的精髓所在。

【关键词】中考专题 复习教学 动点问题

笔者有幸参加了市教研室组织的初三复习研讨会,聆听了与会老师上的“动点问题”中考专题复习课。应该说,动点问题以几何图形为载体,运动变化为主线,集多个知识点、多种解题方法、数学思想于一身,综合性强,能力要求高,学生对此类问题更是倍感困惑,课堂实效不理想。然而,在实际的教学中,上课教师精心的教学设计和灵活的课堂应变,使得原本枯燥乏味的复习课生机盎然:炒“冷饭”变成了色香味俱全的“蛋炒饭”。原来中考专题复习课可以这样上,我恍然大悟。

一、布“点”为基,做好铺垫——工于开头课生辉 片段回顾1:

课堂伊始,教师开

培优专题3 矩形中的动点问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

广西师大附中双语实验学校 八年级数学培优

培优专题3 矩形中的动点问题

1.如图,已知点G是矩形ABCD的边AB上的一点,点P是BC边上的一个动点,连接DG,GP,点E,F分别是GD,GP的中点,当点P从点B向点C运动时,EF的长度( )

A.保持不变

B.逐渐增大 C.逐渐减小

D.不能确定

2.如图,点P为矩形ABCD的边BC上的一个动点,对角线AC,BD相交于点O,且PE⊥BD于点E,PF⊥AC于点F,若AB=6,BC=8,则PE+PF的值为( )

A.2.4

B.4.8

C.5

D.10

3.如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则PA+PB+PM的最小值是 .

4.如图,点A,B,C,D为矩形ABCD的四个顶点,AB=25 cm,AD=8 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,运动到点B为止,点Q以2 cm/s的速度向点D移动. (1

培优专题3 矩形中的动点问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

广西师大附中双语实验学校 八年级数学培优

培优专题3 矩形中的动点问题

1.如图,已知点G是矩形ABCD的边AB上的一点,点P是BC边上的一个动点,连接DG,GP,点E,F分别是GD,GP的中点,当点P从点B向点C运动时,EF的长度( )

A.保持不变

B.逐渐增大 C.逐渐减小

D.不能确定

2.如图,点P为矩形ABCD的边BC上的一个动点,对角线AC,BD相交于点O,且PE⊥BD于点E,PF⊥AC于点F,若AB=6,BC=8,则PE+PF的值为( )

A.2.4

B.4.8

C.5

D.10

3.如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则PA+PB+PM的最小值是 .

4.如图,点A,B,C,D为矩形ABCD的四个顶点,AB=25 cm,AD=8 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,运动到点B为止,点Q以2 cm/s的速度向点D移动. (1

函数动点问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

题型:选择题 难度:中等 详细信息 如图①,在矩形ABCD中,点P从点B出发沿BC、CD、DA运动至点A停止,设P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②,则梯形ORMN的面积为( ) A.65 B.60 C.40 D.20 根据图②中y与x的变化关系得出梯形的高,以及梯形的上底和下底,进而求出面积即可. 【解析】 设P运动的路程为x,△ABP的面积为y, 当x=3时,y取到最大,当x=8时,y开始减小,则CD=5, 故AB=5,BC=3, 则S△ABC=×3×5=即R,M的纵坐标为:∵EO=3,则TN=3, ∴NO=11,RM=8-3=5, ∴梯形ORMN的面积为:(5+11)×故选:B. 题型:填空题 难度:中等 详细信息 =60. , , 已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙,若AB=6cm,试回答下列问题: (1)图甲中BC的长度是 . (2)图乙中A所表示的数是 . (3)图甲中的图形面积是 . (4)图乙中B所表示的数是 . 题型:解答题 难度:困难 详细信息