二次函数常考题

“二次函数常考题”相关的资料有哪些?“二次函数常考题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数常考题”相关范文大全或资料大全,欢迎大家分享。

第2章《二次函数》常考题集(07):2.4 二次函数y=ax2+bx+c的图象

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

第2章《二次函数》常考题集(07):2.4 二次函数y=ax2+bx+c

的图象

选择题

91.二次函数y=ax+bx+c的图象如图所示,则下列说法错误的是( )

2

A.ac<0

B.方程ax+bx+c=0的根是x1=﹣1,x2=3 C.a+b+c>0

D.当x>1时,y随x的增大而增大

92.二次函数y=mx+(6﹣2m)x+m﹣3的图象如图所示,则m的取值范围是( )

2

2

A.m>3

B.m<3

2

C.0≤m≤3 D.0<m<3

93.已知二次函数y=ax+bx+c的图象如图所示,那么下列判断中不正确的是( )

A.abc>0

B.b﹣4ac>0

2

2

C.2a+b>0 D.4a﹣2b+c<0

94.已知二次函数y=ax+bx+c的图象如图所示,则点(ac,bc)在( )

第1页(共6页)

A.第一象限

2

B.第二象限 C.第三象限 D.第四象限

95.已知二次函数y=ax+bx+c,如果a>b>c,且a+b+c=0,则它的大致图象应是( )

A. B.

C.

2

D.

96.如果b>0,c>0,那么二次函数y=ax+bx+c的图象大致是( )

A. B.

C.

2

D.

97.已知二次函数y=ax+bx+c的图象如图所示,则

二次函数中考题集锦

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

2009年中考二次函数题集锦

1.(2009杭州) 已知点P(x,y)在函数y?1x2??x的图象上,那么点P应在平面直角坐

标系中的( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2.(2009杭州) 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限。其中错误的是( )A.只有① B.只有② C.只有③ D.①②③ 3.(2009南州)抛物线的图象如图1所示,根据图象可知,抛物线的解析式可能是( ) ..A、y=x2-x-2 B、y=? D、y=?x?x?2 4.(2009南充)抛物线y?a(x?1)(x?3)(a?0)的对称轴是直线( ) A. x?1

B.x??1

C.x??3

D.x?3

212x?212?1 C、y=?12x?212x?1

图1

5.(2009莆田)二次函数y??2x2?4x?1的图象如何平移就褥到y??2x2的图像( ) A.向左平移1个单位,再向上平移3个单位. B

初中二次函数考题规律

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

初中二次函数考题规律

例1 已知以x为自变量的二次函数y=(m-2)x2+m2-m-2图像经过原点,则m的值是

例2 如图,如果函数y=kx+b的图像在第一、二、三象限内,那么函数y=kx2+bx-1的图像大致是( )

a b c d

例3 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=3(5),求这条抛物线的解析式。例4 已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-32 (1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标。例5 已知⊿ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A的坐标为(—1,0),求 (1)B,C,D三点的坐标; (2)抛物线经过B,C,D三点,求它的解析式; (3)过点D作DE∥AB交过B,C,D三点的抛物线于E,求DE的长。例6 把抛物线y=3x2先向上平移2个单位,再

第23章《二次函数与反比例函数》常考题集(28):23.6 反比例函数

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

第23章《二次函数与反比例函数》常考题集(28):23.6 反比

例函数

选择题

61.如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会( )

A.逐渐增大 B.不变

C.逐渐减小

D.先增大后减小

62.反比例函数y=(k≠0)的图象经过点(﹣2,3),则该反比例函数图象在( A.第一,三象限 B.第二,四象限

C.第二,三象限

D.第一,二象限

63.反比例函数y=﹣的图象在( ) A.第一、三象限 B.第二、四象限

C.第二、三象限

D.第一、二象限

64.反比例函数y=﹣的图象位于( ) A.第一、二象限 B.第三、四象限

C.第一、三象限

D.第二、四象限

65.已知反比例函数的图象经过点P(﹣2,1),则这个函数的图象位于( ) A.第一、三象限 B.第二、三象限

C.第二、四象限 D.第三、四象限

67.对于反比例函数

(k≠0),下列说法不正确的是( )

A.它的图象分布在第一、三象限

B.点(k,k)在它的图象上 C.它的图象是中心对称图形 D.y随x的增大而增大

第1页(共5页)

68.已知反比例函数,下列结论

二次函数初中数学中考题汇总

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

二次函数初中数学中考题汇总

三、解答题:(共x分)

(2011?岳阳市)26.(本题满分l0分)九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践一应用——探究的过程:

(1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m.隧道顶部最高处距地面6.25m,并画出了隧道截面图.建立了如图②所示的直角坐标系.请你求出抛物线的解析式. (2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全.问该隧道能否让最宽3m.最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?

(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述抛物线模型塑.提出了以下两个问题,请予解答:

Ⅰ.如图③,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上.顶点A、B落在x轴上.设矩形ABCD的周长为l,求l的最大值。

Ⅱ.如图④,过原点作一条y?x的直线OM,交抛物线于点M.交抛物线对称轴于点N,P为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q。问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是

《二次函数》说课稿

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

《二次函数y=ax2+bx+c(a≠0)的图象与字

母系数a、b、c的关系》

说 课 稿

一.教学背景分析: (一)教材分析

本节课的教学内容是二次函数y=ax2+bx+c(a≠0)的图象与字母系数a、b、c的关系, 是二次函数图像和性质及一元二次方程与函数的综合性应用,是二次函数教学中的重点、难点之一,它是集图像、符号、文字为一体的问题。同时也是近年来中考命题的热点,在中考试卷中通常以选择题(3分)或填空题(4分)的方式呈现。因为所占的分值少,加之需要学生有良好的学习基础,所以教学中未能引起教师和学生的足够重视。学生在识图的过程中往往容易忽略特殊点、对称轴问题,不去归纳和总结解决这类问题的模型,所以其中一个选择支的误判,就会增加失分,而且影响学生对后面二次函数综合性问题解决的能力的提升。因此通过这一教学内容做专题性的研讨,尝试寻求建立解决这一问题的模型,优化解决问题的方法。从而提高学生分析和解决问题的能力。 (二)学情分析:

学生已经学习了二次函数图像及性质等相关内容,具有一定的知识储备,能运用图像和性质对简单的问题进行分析和解答,但部分学生的计算能力、推理能力较弱,对这类问题的数形结合思想、特殊点函数值的利用、式子的变形技巧等,不能结

二次函数(应用)

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

二次函数应用

1.(2012?聊城)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;

(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元? 2.(2010?武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).

(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为w元,求w与x的函数关系式;

(3)一天订住多少个房间时,宾馆的利

二次函数(课)

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

二次函数

【教学目标】

1.了解二次函数的意义,会用待定系数法求二次函数的解析式.

2.会用描点法画二次函数的图象,通过图象了解二次函数的性质,并运用二次函数的性质解决相关问题.

3.了解二次函数与一元二次方程的关系,进一步体会数形结合、转化等思想方法.

【教学重难点】

二次函数的图象和性质的应用.

【教学过程】

一、基础训练

1.二次函数y ax2 bx c(a 0)图象如图所示.

(1)你能根据图中的信息得出哪些结论?

(2)若抛物线与x轴交点的横坐标为-1和5,则该抛物线的对称轴为 ,方程ax2 bx c 0的根为;

(3)若抛物线的顶点坐标为(2,9),则方程ax bx c m有实数根的条件是 ;

(4)在(2)的条件下,若抛物线与y轴交于点(0,5),请求出该二次函数解析式.

2

二、合作交流

1.二次函数y ax2 bx c(a≠0)图象如图所示,下列结论:①abc>0;②2a b=

220;③当m≠1时,a b>am2 bm;④a b c>0;⑤若ax1 bx1=ax2 bx2,且x1

≠x2,则x1 x2=2.其中正确的有( ).

A.①②③

C.②⑤ B.②④ D.②③⑤

2.若抛物线y mx (m 2)x 1m

§3.3 二次函数

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

§3.3 二次函数

A组 2015年全国中考题组

一、选择题

1.(2015·山东泰安,19,3分)某同学在用描点法画二次函数y=ax2+bx+c图象时,列出了下面的表格:

x y … … -2 -11 -1 -2 0 1 1 -2 2 -5 … … ( )

由于粗心,他算错了一个y值,则这个错误的数值是 A.-11

B.-2

C.1

D.-5

解析 由表格知二次函数的对称轴为x=0,且过点(0,1),(1,-2),∴b?-2a=0,

?a=-3,?

解得?b=0,∴二次函数解析式为y=-3x2+1.当x=2时,?c=1,

??a+b+c=-2.?c=1.y=-3×22+1=-11,故选D. 答案 D

2.(2015·四川巴中,10,3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=-1,下列结论:①abc<0 ②2a+b=0 ③a-b+c>0 ④4a-2b+c

B.只有①

( ) C.③④

D.①④

b

解析 由图象可知:a>0,b>0,c<0所以abc<0;故①正确;对称轴-2a=-1,可得b=2a,故②错误;当x=-1时,a-b+c<0,故③错误;当x=-2时,4a-2b+c<0,故④正确. 答案 D

3.(2015·四川泸州,9,3分)若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=-1,则使函数值y>0成立的x的取值范围是( )

A.x<-4或x>2

7、二次函数

标签:文库时间:2025-02-03
【bwwdw.com - 博文网】

7、二次函数(八上ch22)

一、二次函数概念:

1.二次函数的概念; 2. 二次函数y?ax2?bx?c的结构特征: 二、二次函数的性质

1. y?ax2的性质:a 的绝对值越大,开口越小。(a的符号、开口方向、顶点、对称轴、性质) 2. y?ax2?c的性质:(上加下减)。 3. y?a?x?h?的性质:(左加右减)。 4. y?a?x?h??k的性质: 三、二次函数图象的平移

1. 平移步骤:⑴ 将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标?h,k?;

⑵ 保持抛物线y?ax2的形状不变,将其顶点平移到?h,k?处,具体平移方法如下:

向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移 |k|个单位向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2+k向右(h>0)【或左(h

y=ax2向上(k>0)【或向下(k<0)】平移|k|个单位y=ax2+k222

2. 平移规律:“h值正右移,负左移;k值正上移,负下移”.“左加右减,上加下减”. 四、二次函数y?a?x?h??k与y?ax2?bx?c的比较

从解析式上看,y?a?x?h??k与y?ax2?bx?c是两种不同的表达形式,后者通过配方可以得到b?4ac?b2b4ac?b2?前者,即y?a?x???,其中h??,. k?2a4a2a4a??222五、二次函数y