椭圆和双曲线焦点三角形的相关性质
“椭圆和双曲线焦点三角形的相关性质”相关的资料有哪些?“椭圆和双曲线焦点三角形的相关性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“椭圆和双曲线焦点三角形的相关性质”相关范文大全或资料大全,欢迎大家分享。
椭圆中焦点三角形的性质(含答案)
焦点三角形习题
b2性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为2
ax2y2性质二:已知椭圆方程为2?2?1(a?b?0),两焦点分别为F1,F2,设焦点三角形
abPF1F2中?F1PF2??,则S?F1PF2?b2tan证明:记|PF1|?r1,|PF2|?r2,
?2.
由椭圆的第一定义得r1?r2?2a,?(r1?r2)2?4a2.
在△F1PF2中,由余弦定理得:r1?r2?2r1r2cos??(2c)2.
配方得:(r1?r2)2?2r1r2?2r1r2cos??4c2. 即4a2?2r1r2(1?cos?)?4c2.
222(a2?c2)2b2?r1r2??.
1?cos?1?cos?由任意三角形的面积公式得:
S?F1PF2?1sin?r1r2sin??b2??b2?21?cos?2sin?22?b2?tan?.
?22cos22cos??S?F1PF2?b2tan?2.
y2x2同理可证,在椭圆2?2?1(a>b>0)中,公式仍然成立.
abx2y2性质三:已知椭圆方程为2?2?1(a?b?0),两焦点分别为F1,F2,设焦点三角形
abPF1F2中?F1PF2??,则cos??1?2e2.
性质三
证明:
相似三角形的性质
篇一:相似三角形的定义与性质
同学个性化教学设计
年 级: 九年级教 师: 张永慧科 目:数学 班 主 任: 朱敏_ 日 期: _时 段: ___
1 海到无边天作岸,山高绝顶我为峰
校长签字: ___________日期3 海到无边天作岸,山高绝顶我为峰
篇二:相似三角形性质
精锐教育学科辅导讲义
篇三:相似三角形的性质 导学案
《相似三角形的性质》 学案
【学习目标】
知识与技能:理解并运用相似三角形的性质,灵活运用相似三角形的性质解题。 过程与方法:经历探索相似三角形性质的过程,发展逻辑思维能力和应用能力。 情感与价值观:感受数学学习中的推理过程,积极参与推理活动。
【温故知新】
1、相似三角形的判定方法有哪一些?
2、如图,在△ABC中,DE∥BC,若AD:DB=1:3,则△ADE 与△ABC的相似比为 。 3、已知:△ABC△∽ABC,AB=2cm,BC=3cm,AB=4cm, AC=2cm,则AC= cm, BC=cm。
''
''
'''
''
B
【学习过程】
1、自主学习:两个相似三角形,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.
例如,如图:△ABC和△A′B
《相似三角形的性质》说课稿
《相似三角形的性质》说课稿
各位领导、老师们: 大家好!
今天我讲的是九年级数学下册的“27.2.2相似三角形的性质”一课,用的是人教版九年级数学下册数学教材 。
下面,我分四个部分来汇报我对这节课的教学设计,这就是“教材 分析”、“教学方法与教学手段的选择”、“学法指导”和“教学过程的设计” 一、教材分析 1、教材的地位及作用
“相似三角形的性质”是九年级数学下册“相似形”这章的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。它是全等三角形性质的拓展,也是研究相似多边形的基础,这些性质是解决有关实际问题的重要工具。 2、教学目标
根据学生已有的认知基础及本课教材的地位、作用,确定本课的教学目标为: (1)知识目标:使学生掌握相似三角形的性质定理1及其证明方法,能运用
相似三角形性质定理解决问题。
(2)能力目标:通过性质定理的推导,培养学生的逻辑推理能力和动手实践
能力。
(3)德育渗透:通过全等三角形和相似三角形的类比学习,树立学生从特殊
到一般的认识规律,通过先实验后归纳再推理强化学生“实践出真知”的求知意识。
3、教学重、难点
因为相似三角形的性质是解
相似三角形的性质和判定练习
相似三角形的性质和判定练习
一.选择题(共25小题)
1.(2012?遵义)如图,在△ABC中,EF∥BC,
=,S
四边形BCFE
=8,则S△ABC=( A )
A. 9
2.(2012?宜宾)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为( C )
B. 10 C. 12 D. 13
A. B. C. D. 3.(2012?台湾)如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为何?( B )
A. B. C. 5 D. 6 4.(2012?绥化)如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=( D )
A. 2:5:25
B. 4:9:25 C. 2:3:5 D. 4:10:25 5.(2012?陕西)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=( D )
A. 1:2
6.(2012?日照)在菱形ABCD
相似三角形的性质和应用讲义
个性化辅导讲义
学生: 科目: 第 阶段第 次课 教师:
相似三角形的性质和应用 课 题 1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程. 2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质. 3、会运用上述两个性质解决简单的几何问题. 1、本节教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质. 2、相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点. 1、相似三角形的对应角相等,对应边成比例. 2、相似三角形的周长比等于相似比,面积比等于相似比的平方。 教学目标 重点、难点 考点及考试要求 教学内容 知识框架 1、相似三角形的对应角相等,对应边成比例. 2、相似三角形对应高线、对应中线、对应角平分线之比等于相似比. 3、相似三角形的周长比等于相似比;相似三
三角形性质定理小结
三角形相关的性质与定理
三角形
1、 三角形的内角和是180° 2、 三角形的外角和是360°
3、 三角形的任意一个外角都等于和它不相邻的两个内角的和。 4、 三角形的任意一个外角都大于和它不相邻的内角 全等三角形 1、 对应边相等 2、 对应角相等 三角形全等的判定
1.三边对应相等的两个三角形全等(SSS或边边边)
2.两边和它们的夹角对应相等的两个三角形全等(SAS或边角边) 3.两角和它们的夹边对应相等的两个三角形全等。(ASA或角边角)
4.两个角和其中一个角的对边对应相等的两个三角形全等(AAS或角角边) 5.斜边和一条直角边对应相等的两个直角三角形全等(HL或斜边、直角边) 等腰三角形的性质
1.等腰三角形的两个底角相等(等边对等角);
2 “三线合一”.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 等腰三角形的判定
如果一个三角形有两个角相等,那么这两个角所对的边相等。(等角对等边) 等边三角形
等边三角形的性质
1.等边三角形的三个内角相等,并且每一个角都等于60°。 2.三个角都相等的三角形是等边三角形。
3.有一个角是60°的等腰三角形是等边三角形。 直角三角形
5.直角三角形的两个锐角互余
1..在直角
相似三角形性质2
学习目标
1、在理解相似三角形特征的基础上, 掌握相似三角形对应高、对应中线、对 应角平分线、周长、面积的比等性质.
2、通过实践体会相似三角形的性质, 会用性质解决相关的问题.
课前复习:
(1)什么叫相似三角形?
对应角相等、对应边成比例 的三角形,叫做相似三角形. (2)如何判定两个三角形相似?
①两个角对应相等; ②两边对应成比例,且夹角相等; ③三边对应成比例.
课前复习:
(3)相似三角形有何特征?
A A/
B
C
B/
C/
①相似三角形的对应角_____________
②相似三角形的对应边______________
想一想: 它们还有哪些性质呢?
情境引入 一个三角形有三条重要线段: 高、中线、角平分线 ________________ 如果两个三角形相似, 那么这些对应线段有什么关系呢?
ABC ∽ A B C
1 相似比为 2
A
(1)
对应高的比
1 AD 2 _ A D __________
B
D
C A′
B′
D
C′
ABC ∽ A B C
1 相似比为 2
A
(2)
对应中线的比
1 AD 2 A D __________ _
B
D
C A′
B′
D
C′
ABC ∽ A B C
1 相似比为 2 对应角平分线的比
A
(3)
1 AD A
三角形的内角和与外角的性质
1、(2011 昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )
A、45° B、60° C、75° D、85°
2、(2011 义乌市)如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于( )
A、60° B、25° C、35° D、45°
3、(2011 台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确( )
A、∠2=∠4+∠7 B、∠3=∠1+∠6
C、∠1+∠4+∠6=180° D、∠2+∠3+∠5=360°
4、(2011 台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何( )
A、36 B、72
C、108 D、144
5、(2011 台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?( )
A、37 B、57
C、77 D、97
6、(2011 宁波)如图所示,AB∥CD,∠E=37
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
直角三角形的性质和判定
直角三角形的性质和判定
一、知识要点
1、直角三角形的性质:
(1)在直角三角形中,两锐角 ;
(2)在直角三角形中,斜边上的中线等于__________的一半;
(3)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于 ___________;
(4)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于___________。 2、 直角三角形的判定:
(1)有一个角等于_________的三角形是直角三角形; (2)有两个角_____________的三角形是直角三角形;
(3)如果三角形一边上的中线等于这条边的________,那么这个三角形是直角三角形。
二、知识运用典型例题
例1、在△ABC中,∠C=90°,∠A=30°, CD⊥AB, (1) 若BD=8,求AB的长; (2) 若AB=8,求BD的长。
例2、如图,在Rt△ABC中,CD是斜边上的中线,CE⊥AB,已知AB=10cm,DE=2.5cm,求CD和∠DCE。
例3、如图,在△ABC中,∠C=90°,∠A=x°,∠B=2x°求x。
例4、如图,已知AB⊥BC,AE∥B