三角形的中点的性质定理
“三角形的中点的性质定理”相关的资料有哪些?“三角形的中点的性质定理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三角形的中点的性质定理”相关范文大全或资料大全,欢迎大家分享。
三角形性质定理小结
三角形相关的性质与定理
三角形
1、 三角形的内角和是180° 2、 三角形的外角和是360°
3、 三角形的任意一个外角都等于和它不相邻的两个内角的和。 4、 三角形的任意一个外角都大于和它不相邻的内角 全等三角形 1、 对应边相等 2、 对应角相等 三角形全等的判定
1.三边对应相等的两个三角形全等(SSS或边边边)
2.两边和它们的夹角对应相等的两个三角形全等(SAS或边角边) 3.两角和它们的夹边对应相等的两个三角形全等。(ASA或角边角)
4.两个角和其中一个角的对边对应相等的两个三角形全等(AAS或角角边) 5.斜边和一条直角边对应相等的两个直角三角形全等(HL或斜边、直角边) 等腰三角形的性质
1.等腰三角形的两个底角相等(等边对等角);
2 “三线合一”.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 等腰三角形的判定
如果一个三角形有两个角相等,那么这两个角所对的边相等。(等角对等边) 等边三角形
等边三角形的性质
1.等边三角形的三个内角相等,并且每一个角都等于60°。 2.三个角都相等的三角形是等边三角形。
3.有一个角是60°的等腰三角形是等边三角形。 直角三角形
5.直角三角形的两个锐角互余
1..在直角
等腰三角形的性质定理
石家庄精英中学导学提纲初三数学使用时间:7月3日
第一章第一节你能证明它们吗?(1)
学习目标:
1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理。学习重点:了解所学公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。学习难点:证明等腰三角形性质时辅助线做法。
预习指导:
1、先精读一遍教材P2-P4,用红笔进行勾画;再针对学案二次阅读教材,并回答问题;
2、找出自己的疑惑和需要讨论的问题,随时记录在课本或预习学案上,准备课上讨论质疑。
学习环节:
一、自学导航:
1、什么是等腰三角形?
2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。
3、试用折纸的办法回忆等腰三角形有哪些性质?
4、列举我们已知道的公理:
(1)公理:同位角,两直线平行。
(2)公理:两直线,同位角。
(3)公理:的两个三角形全等。(简称,字母表示)(4)公理:的两个三角形全等。(简称,字母表示)(5)公理:的两个三角形全等。(简称,字母表示)(6)公理:全等三角形的对应边,对应角。
二、合作探究:
(一)两角及其中一角的对边对应相等的两个三角形全等。(AAS)
证明过程:
已知:
求证:
相似三角形的性质
篇一:相似三角形的定义与性质
同学个性化教学设计
年 级: 九年级教 师: 张永慧科 目:数学 班 主 任: 朱敏_ 日 期: _时 段: ___
1 海到无边天作岸,山高绝顶我为峰
校长签字: ___________日期3 海到无边天作岸,山高绝顶我为峰
篇二:相似三角形性质
精锐教育学科辅导讲义
篇三:相似三角形的性质 导学案
《相似三角形的性质》 学案
【学习目标】
知识与技能:理解并运用相似三角形的性质,灵活运用相似三角形的性质解题。 过程与方法:经历探索相似三角形性质的过程,发展逻辑思维能力和应用能力。 情感与价值观:感受数学学习中的推理过程,积极参与推理活动。
【温故知新】
1、相似三角形的判定方法有哪一些?
2、如图,在△ABC中,DE∥BC,若AD:DB=1:3,则△ADE 与△ABC的相似比为 。 3、已知:△ABC△∽ABC,AB=2cm,BC=3cm,AB=4cm, AC=2cm,则AC= cm, BC=cm。
''
''
'''
''
B
【学习过程】
1、自主学习:两个相似三角形,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.
例如,如图:△ABC和△A′B
《相似三角形的性质》说课稿
《相似三角形的性质》说课稿
各位领导、老师们: 大家好!
今天我讲的是九年级数学下册的“27.2.2相似三角形的性质”一课,用的是人教版九年级数学下册数学教材 。
下面,我分四个部分来汇报我对这节课的教学设计,这就是“教材 分析”、“教学方法与教学手段的选择”、“学法指导”和“教学过程的设计” 一、教材分析 1、教材的地位及作用
“相似三角形的性质”是九年级数学下册“相似形”这章的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。它是全等三角形性质的拓展,也是研究相似多边形的基础,这些性质是解决有关实际问题的重要工具。 2、教学目标
根据学生已有的认知基础及本课教材的地位、作用,确定本课的教学目标为: (1)知识目标:使学生掌握相似三角形的性质定理1及其证明方法,能运用
相似三角形性质定理解决问题。
(2)能力目标:通过性质定理的推导,培养学生的逻辑推理能力和动手实践
能力。
(3)德育渗透:通过全等三角形和相似三角形的类比学习,树立学生从特殊
到一般的认识规律,通过先实验后归纳再推理强化学生“实践出真知”的求知意识。
3、教学重、难点
因为相似三角形的性质是解
22.3相似三角形的性质(2)--性质定理的应用
第22章 课题《22.3相似三角形的性质(2)》 --性质定理的应用 第______周 星期_____ 第_____节 2017_____月_____日 编案教师:甘 教 学 目 标 教学重点 教学难点 执教教师: 教学课时: 1 节 知识与技能 使学生能运用相似三角形的性质解决的实际问题,巩固相似三角形性质。 1.通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。 过程与方法 2.通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。 情感与价值观 通过对生活问题的解决,体会数学知识在实际中的广泛应用。 运用相似三角形的性质解决简单的实际问题。 如何将实际问题转化为相似三角形的性质问题 教学过程 教学环节 教学内容 1.相似三角形的性质定理的内容是什么? 2.练一练: (1)已知:△ABC∽△A′B′C′ ,BC=3.6cm,BC =6cm, AE是△ABC的一条中线,AE=2.4cm, 则△A′B′C′中对应中线A′E′的长是 一. 温故知新 (
22.3相似三角形的性质(2)--性质定理的应用
第22章 课题《22.3相似三角形的性质(2)》 --性质定理的应用 第______周 星期_____ 第_____节 2017_____月_____日 编案教师:甘 教 学 目 标 教学重点 教学难点 执教教师: 教学课时: 1 节 知识与技能 使学生能运用相似三角形的性质解决的实际问题,巩固相似三角形性质。 1.通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。 过程与方法 2.通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。 情感与价值观 通过对生活问题的解决,体会数学知识在实际中的广泛应用。 运用相似三角形的性质解决简单的实际问题。 如何将实际问题转化为相似三角形的性质问题 教学过程 教学环节 教学内容 1.相似三角形的性质定理的内容是什么? 2.练一练: (1)已知:△ABC∽△A′B′C′ ,BC=3.6cm,BC =6cm, AE是△ABC的一条中线,AE=2.4cm, 则△A′B′C′中对应中线A′E′的长是 一. 温故知新 (
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
3.6三角形外角定理
3 .6关注三角形的外角
如图. ∠1是△ABC的一个外角, ∠1与图中的其 A 它角有什么关系?
能证明你的结论吗?
∠1+∠4=1800 ; ∠1>∠2; ∠1>∠3; ∠1=∠2+∠3.
2
3
B
4 1 C
D
证明:∵∠2+∠3+∠4=1800(三角形内角和定理), ∠1+∠4=1800(平角的意义), ∴∠1= ∠2+∠3.(等量代换). ∴ ∠1>∠2,∠1>∠3(和大于部分).
三角形的一个外角等于和它不相邻的两个内角的和. 三角形的一个外角大于任何一个和它不相邻的内角.
三角形的一个外角等于和它不相邻的两个内角的和. 三角形的一个外角大于任何一个和它不相邻的内角. 在这里,我们通过三角 形内角和定理直接推导 出两个新定理.像这样, 由一个公理或定理直接 推出的定理,叫做这个公 理或定理的推论.
A 2
3
B
4 1 C
D
推论可以当作定理使用.
三角形内角和定理的推论: 推论1: 三角形的一个外角等于和它不相邻的 两个内角的和. 推论2: 三角形的一个外角大于任何一个和它 不相邻的内角. △ABC中: ∠1=∠2+∠3; ∠1>∠2,∠1>∠3.
3
B
A 2
4 1 C
D
这个结论以后可以直接运用.
E
例1 已
相似三角形的判定的预备定理
本节课是人教版数学 相似三角形的判定的预备定理 ,共20张PPT,本节课主要从比例线段入手,进入相似三角形的判定--预备定理。主要强调了预备定理的条件,使用环境和方法。最后在到简单的实际应用。
2.比例中项:当两个比例内项相等时, 即
a b (或 = c , a:b=b:c), b
那么线段 b 叫做线段 a 和 c 的比例中项.
即: b 2 = ac2 + 3,2
±1 3两数的比例中项是 ____ .两线段(2 + 3 )cm,(2 -
3 )cm的
1cm 比例中项是 ____ .
本节课是人教版数学 相似三角形的判定的预备定理 ,共20张PPT,本节课主要从比例线段入手,进入相似三角形的判定--预备定理。主要强调了预备定理的条件,使用环境和方法。最后在到简单的实际应用。
3.黄金分割:A
C
B
把一条线段( )分成两条线段,使其 AB 中较长线段( )是 AC 原线段(AB)与较短线段( )的比例中项,就叫做 BC 把这条 线段黄金分割。
即:AC = AB ?BC, ACC是线段AB的黄金分割点,较长线段AC = 2
2
5- 1 AB 2
(
5 - 1 , 则AB = ____ . 4
)
本节课是人教版数学 相似三角形的判定的预备定理 ,共20张P
等腰与靠边三角形、全等三角形的性质与判定的综合应用
等腰与等边三角形、全等三角形的性质和判定的综合应用
一、等腰、等边三角形
1、已知等腰三角形的一边长为5cm,另一边长为6cm,则它的周长为 。 2、已知等腰三角形的一边长为4cm,另一边长为9cm,则它的周长为 。
3、等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm.则腰长为 。
4、在等腰三角形中,设底角为x,顶角为y0,用含x的代数式表示y,得y= ; EC用含y的代数式表示x,则x= 。 5、有一个角等于50°,另一个角等于 的三角形是等腰三角形。 FDB6、如图,∠A=15°,AB=BC=CD=DE=EF,则∠GEF= 。 7、有一个内角为40°的等腰三角形的另外两个内角的度数为 ,有一个内角为140°的等腰三角形的另外两个内角的度数为 。
8、等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为 。
9、如果等腰三角形的三边均为整数且它的周长为10cm,那么它的三边长为 。 10、如图,把矩形ABCD