全国数学建模和美国数学建模哪个难
“全国数学建模和美国数学建模哪个难”相关的资料有哪些?“全国数学建模和美国数学建模哪个难”相关的范文有哪些?怎么写?下面是小编为您精心整理的“全国数学建模和美国数学建模哪个难”相关范文大全或资料大全,欢迎大家分享。
08美国数学建模比赛A题
Team # 3694 Page 1 of 29
不可忽视的事实:一个海平面上升预测模型 杜克大学:Jason Chen,Joonhahn Cho,Brian Choi
目 录
目录........................................................1 问题介绍....................................................2 II.模型建立................................................4
海平面上升模型..........................................4 温度数据分析............................................5 冰原模型................................................5 物质平衡---积累模型....................
美国数学建模写作培训技巧
一、表的格式:表头在上 注:红字标记代表可通用的句子
1、 在表前对表的来源和数据进行说明
例1
In Table 1, we summarize the minimum number of escorts needed to reach each service level 表的解释部分
For each airport, the difference between the Good and Adequate service levels is roughly a factor of two, with slightly increasing returns to scale; with larger scales, the staff are spread more uniformly, so it is less likely that a job will crop up with nobody close enough to take it.
例2
表的解释部分
(前面的说出数据的来源,然后筛选出比较代表性的数据进行说明)。
We determined absolute and relative criticality val
2008美国数学建模真题论文
Take a bath for mainland
Abstract:全世界约有三分之一的人口,包括许多大城市位于居海岸线
60km的范围内。在美国,相对海平面上升100cm,按现在经济发展水平和价格估算,仅保护发达地区与滨海旅游区所需费用和欠发达地区的受淹损失,累计经济损失就将高达2700-4500亿美元。由全球气候变暖所导致的海平面上升已经被世界各国所关注,海平面上升可能带来的影响包括淹没低地、加剧海岸侵蚀、增加风暴潮的发生频率、盐水入侵等。
本文主要研究由于全球气温升高造成的北极冰帽融化对大陆的影响。以佛罗里达州为例,用灰色模型对近几十年CO2排放量上升引起气温升高,气温升高导致冰川融化引起海平面上升,以及海平面上升造成的陆地面积减少分别建立灰色模型、线性模型。就陆地面积减少而言预测了今后50年陆地面积因海平面上升的减少量。
Keywords:气温升高,海平面上升,灰色模型,线性拟合
一、引言
大量研究表明,人类活动造成的大气中CO2、CH4、NXO等温室气体含量急剧增加所引起的气候与环境效应,将对下一个世纪人类的生存与发展构成极大威胁,其中最严重的威胁之一是气候变暖导致的冰川融化使全球性的海平面的加速上升。在过去100年中,全球海平面平均
2010年全国数学建模A题
储油罐的变位识别与罐容表标定
摘要
本文解决了地下储油罐体因发生变位而需对罐容表进行重新标定的问题。首先,通过二重定积分,得到了椭圆柱体水平放置时,容油量与液位高度的函数关系。并通过进一步分析,找到了水平放置与倾斜时液位高度替换关系,进而得到了倾斜时容油量与液位高度的函数关系;其次,建立了储油罐两侧球冠部分容油量的函数表达式,再仿照上述的替换关系,得到了实际储油罐容油量与液位高度的函数关系,并通过matlab软件对上述函数关系进行分析;最后,本文又通过matlab软件对所给实际数据进行拟合,得到了实际测量值与理论计算值近似相等的结论,验证了模型的正确性,也给出了椭圆柱体储油罐变位后油位高度间隔为1cm的罐容表标定值以及实际罐体变位后油位高度间隔为10cm的罐容表标定值。
关键词:储油罐变位;罐容表标定;定积分;matlab软件
1
1 问题的提出
通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变
数学建模
湖南农业大学课程论文
学 院: 班 级: 姓 名: 学 号: 课程论文题目:数学建模 课程名称:数学建模 评阅成绩: 评阅意见:
成绩评定教师签名: 日期: 年 月
日
数学建模
学生:
(X学院,学号)
摘要: 本文要解决的问题小孩沿着曲线行走,玩具的运动轨迹以及产量关于温度的线性
回归方程。 首先,对问题进行重述明确题目的中心思想,做出合理的假设,对于玩具轨迹画图表明,并对符号做简要的说明。 然后,对问题进行分析,根据图示假设设立方程。最后使用MATLAB软件求解上述模型。
关键词:玩具轨迹 线性回归 预测区间 建立模型
一、 问题的重述
(一)玩具轨迹问题
一个小孩借助长度为a的硬棒,拉或推某玩具.此小孩沿某曲线行走,计算并画出玩具的轨迹。
(二)线性回归问题
考察温度x对产量y的影响,测得下列10组数据:
温度(℃)20产量(kg)13.22515.13016.43517.14017.94518.75019.65521.26022.56524.3求y关于x的线性回归方
数学建模
MATLAB软件与基础数学实验 数 学 实 验 材料科学与工程学院 指导老师:阮小娥 实验日期: 2009.6.12 材料84 姓名: 邵茜 学号:08021085 姓名: 王萌 学号:08021086 姓名: 席倩 学号:08021087 实验一:河流流量估计与数据差值
一.实验问题
一条100米宽的河道截面如图所示,为了测量其流量需要知道河道的截面积.为此从一端开始每隔五米测量量出河床的深度如表所示:
河道河床截面图
表.河床的深度(单位:米) 坐标 深度 坐标 深度
X1 2.41 X11 3.91 X2 2.96 X12 3.26 X3 2.15 X13 2.85 X4 2.65 X14 2.35 X5 3.12 X15 3.02 X6 4.23 X16 3.63 X7 5.12 X17 4.12 X8 6.21 X18 3.46 X9 5.68 X19 2.08 X10 4.22 X20 0 是根据以上数据,估计出河道的截面积,进而在已知流速(设为1米/秒)的情况下计算出流量.若河床铺设一条光缆,试估计光缆的长度.
本问题是要利用已知的数据点来获取一条船过这些店的河床函数曲
数学建模
数学建模综合练习
第一章 数学建模方法论
1.举出两三个实例说明建立数学模型的必要性,包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型.
2.怎样解决下面的实际问题.包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等.
(1)估计一个人体内血液的总量.
(2)为保险公司制定人寿保险计划(不同年龄的人应缴纳的金额和公司赔偿的金额). (3)估计一批日光灯管的寿命.
(4)确定火箭发射至最高点所需的时间. (5)决定十字路口黄灯亮的时间长度.
(6)为汽车租赁公司制订车辆维修、更新和出租计划.
(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划
3.下面是众所周知的智力游戏:人带猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米.试设计一个安全过河方案,并使渡河次数尽量地少.
4.假定人口的增长服从这样的规律:时间t的人口为x (t),t到t+?t时间内人口的增长与xm- x(t)成正比(其中xm为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻
美国数学建模题目2017至2017翻译
篇一:2017年建模美赛C题带翻译
Problem C: “Cooperate and navigate”
Traffic capacity is limited in many regions of the United States due to the number of lanes of roads.For example, in the Greater Seattle area drivers experience long delays during peak traffic hoursbecause the volume of traffic exceeds the designed capacity of the road networks. This is particularlypronounced on Interstates 5, 90, and 405, as well as State Route 520, the roads of particular interestfor this problem.
Self-driving, cooperating cars have been proposed as a sol
2012年美国数学建模优秀论文
The
UMAP
Journal
Publisher COMAP ,Inc.
Vol.3 ,No.
Executive Publisher Solomon A.Garfunkel ILAP Editor Chris Arney
Dept.of Math’l Sciences 067aad14c281e53a5802ff30itary Academy West Point,NY 10996
david.arney@067aad14c281e53a5802ff30
On Jargon Editor Yves Nievergelt
Dept.of Mathematics Eastern Washington Univ.Cheney,WA 99004
ynievergelt@067aad14c281e53a5802ff30
Reviews Editor James M.Cargal Mathematics Dept.Troy University—
Montgomery Campus 231Montgomery St.Montgomery,AL 36104
jmcargal@067aad14c281e53a5802ff30
Chief Operating Of àcer Lau
数学建模
中原工学院信息商务学院
数 学 建 模 试 题
1
中原工学院信息商务学院
目录
问题: ......................................................................................................... 3 一、问题重述............................................................................................. 4 二、问题分析............................................................................................. 4 三、模型假设............................................................................................. 4 四、模型求解。 ............................................