平行四边形的判定第二课时说课稿
“平行四边形的判定第二课时说课稿”相关的资料有哪些?“平行四边形的判定第二课时说课稿”相关的范文有哪些?怎么写?下面是小编为您精心整理的“平行四边形的判定第二课时说课稿”相关范文大全或资料大全,欢迎大家分享。
特殊平行四边形教案第二课时
第三章 证明(三)
2.特殊平行四边形(二)
一、学生知识状况分析
在八年级教材中,学生已经对菱形、正方形的性质及其判别方法,通过一些直观的方法进行了大量的探索,所以学生对所要学习的结论已经有所了解。其次经历了《证明(一)》、《证明(二)》的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。再次在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
因为这节课所涉及的很多命题,学生已有所了解,对于这些命题,教科书利用提问的方式让学生联想回忆,然后利用已有的定理证明它们,让学生从中体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。因此,本节课注重新旧知识的结合及学生推理能力的提高,而不要追求证明题的数量和证明的技巧。对证明方法和证明过程的体验,成为本节课的重点。
此外,这部分题目多数有多种思路,注意引导学生选用不同的知识点、从不同的角度思考问题;注意让学生对解题思路和办法进行辨析,从而能对众多解法作优化选择;注意渗透归纳、类比、转化等数学思想方法,而不是给学生一个固有的模式往题目中套。
三、教学准备
特殊平行四边形教案第二课时
第三章 证明(三)
2.特殊平行四边形(二)
一、学生知识状况分析
在八年级教材中,学生已经对菱形、正方形的性质及其判别方法,通过一些直观的方法进行了大量的探索,所以学生对所要学习的结论已经有所了解。其次经历了《证明(一)》、《证明(二)》的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。再次在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
因为这节课所涉及的很多命题,学生已有所了解,对于这些命题,教科书利用提问的方式让学生联想回忆,然后利用已有的定理证明它们,让学生从中体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。因此,本节课注重新旧知识的结合及学生推理能力的提高,而不要追求证明题的数量和证明的技巧。对证明方法和证明过程的体验,成为本节课的重点。
此外,这部分题目多数有多种思路,注意引导学生选用不同的知识点、从不同的角度思考问题;注意让学生对解题思路和办法进行辨析,从而能对众多解法作优化选择;注意渗透归纳、类比、转化等数学思想方法,而不是给学生一个固有的模式往题目中套。
三、教学准备
19.1 平行四边形 (第3课时)19.1.2平行四边形的判定(1)
人教版八年级(下册)
第十九章四边形19.1平行四边形(第3课时)
1、什么是平行四边形? 两组对边分别平行的四边形叫做平行四边形.2、我们学习了平行四边形的哪些性质? 平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等; 平行四边形的对角线互相平分。 AO
D
B
C
平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等;平行四边形的对角线互相平分。
思考:我们已经学习了平行四边形的这些性质, 那么它们的逆命题各是什么呢?两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
我们得到的这些逆命题都成立吗?我们一起 探讨一下吧:
如图1,将两长两短的四根细木条用小钉绞合在 一起,做成一个四边形,使等长的木条成为对边, 转动这个四边形,使它的形状改变,在图形的变化 的过程中,它一直是一个平行四边形吗?A B D A O B D
C
C
图1 图2 如图2,将两根细木条AC、BD的中点重叠,用 小钉绞合在一起,用橡皮筋连接木条的顶点,做成 一个四边形ABCD.转动两根木条,四边形ABCD一直 是一个平行四边形吗?
两组对边分别相等的四边形是平行四边形. 平行四边形这个判定方法,我们如何证明?
已知
19.1 平行四边形 (第3课时)19.1.2平行四边形的判定(1)
人教版八年级(下册)
第十九章四边形19.1平行四边形(第3课时)
1、什么是平行四边形? 两组对边分别平行的四边形叫做平行四边形.2、我们学习了平行四边形的哪些性质? 平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等; 平行四边形的对角线互相平分。 AO
D
B
C
平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等;平行四边形的对角线互相平分。
思考:我们已经学习了平行四边形的这些性质, 那么它们的逆命题各是什么呢?两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
我们得到的这些逆命题都成立吗?我们一起 探讨一下吧:
如图1,将两长两短的四根细木条用小钉绞合在 一起,做成一个四边形,使等长的木条成为对边, 转动这个四边形,使它的形状改变,在图形的变化 的过程中,它一直是一个平行四边形吗?A B D A O B D
C
C
图1 图2 如图2,将两根细木条AC、BD的中点重叠,用 小钉绞合在一起,用橡皮筋连接木条的顶点,做成 一个四边形ABCD.转动两根木条,四边形ABCD一直 是一个平行四边形吗?
两组对边分别相等的四边形是平行四边形. 平行四边形这个判定方法,我们如何证明?
已知
平行四边形的判定说课稿(定)
《平行四边形的判定》说课稿
一、 教材地位和作用:
本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。“承上”,首先,在探究判定定理的证明方法和运用判定定理时,都用到了全等三角形的相关知识;其次,平行四边形的判定定理和性质定理是两两对应的互逆定理,本节课在引入新课时就是类比性质引入判定的。“启下”,首先,平行四边形的性质定理、判定定理是研究特殊的平行四边形的基础;其次,平行四边形性质、判定的探究模式从方法上为研究特殊的平行四边形奠定了基础。并且,本节内容还是学生运用化归思想、数学建模思想的良好素材,培养了学生的创新思维和探索精神。
二、教学目标
(一)知识技能目标
1、运用类比的方法,通过学生的合作探究,得出平行四边形的两个判定方法。
2、理解平行四边形的这两种判定方法,并学会简单运用。
(二)数学思考
1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。
2、在运用平行四边形的判定方法解决问题的过程中,进一
推荐--数学优质教案-平行四边形及其性质 第二课时.doc
数学教案-平行四边形及其性质第二课时
七、教学步骤【复习提问】图1 1.什么叫平行四边形?我们已经学习了它的哪些性质? 2.已知:如图1,,.求证:. 3.什么叫做两条平行线间的距离?它有什么性质?【引入新课】在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.【讲解新课】图2 (1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明.(2)平行四边形性质,定理的综合应用:同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.图3 例2 已知:如图3 的对角线、相交于点,过点与、分别相交于点、.求证:.证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势.如这里可直接由定理3得出,而不再重复定理的推导过程证出.图4 例3 已知,如图4,,,.求的面积.(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小
平行四边形的判定教学反思
篇一:平行四边形的判定(1)及教学反思
18.1.2平行四边形的判定1
学习目标:1.在探索平行四边形的判定条件中,理解并掌握用边、对角线来判
定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题. 学习重点:平行四边形的判定方法及应用.
学习难点:平行四边形的判定定理与性质定理的灵活应用. 学习过程: 一、温故知新
平行四边形的判定教学反思
篇一:平行四边形的判定1教学反思
《平行四边形的判定1》教学反思
本节课充分激发学生学习数学的兴趣,让学生积极参与、讨论,导中有练、有思、有研,改进教师先讲知识,然后再进行强化训练的做法,使讲、练、思、研融合在一起,整节课学生能始终处于思维活跃状态,让学生充分体会快乐学习。在设计、安排和组织教学过程的每一个环节都有意识地体现探索的内容和方法,避免了教学内容的过分抽象和形式化,使学生通过直观感受去理解和把握,体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。
收获:学生对判定的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。 不足:几何证明题一直是学生的一个弱点。八年级的学生按照课标不要求规范的证明过程,但是考试却要求书写严格的过程,由于没有规范的例题示范以及有关习题,所以学生的几何证明题仍然是一个弱项,因此习题课上有部分学生仍然存在会分析,但是书写不规范的情况,这在今后的学习中是一个需要改变和提高的部分。
篇二:平行四边形的判定(一)教学反思
平行四边形的判定(一)教学反思
平行四边形的判定(一)教学反思在华
平行四边形的面积说课稿
平行四边形的面积说课稿
立足“基本”,注重“过程”
——平行四边形的面积说课稿
南洋小学 屈名成
今天我说课的题目是《平行四边形的面积》。接下来我将从以下四个方面来完成我的说课:
一、说教材
教学内容:本节教学内容是人教版九年制义务教育课程标准实验教科书五年级上册第五单元第一课<<平行四边形的面积>>。
教材所占的地位:本节教材是在学生掌握了面积概念和面积单位,长方形、正方形的面积计算,以及认识平行四边形特征的基础上进行教学的,是进一步要学习三角形的面积、梯形的面积、组合图形的面积及六年级圆的面积与立体图形表面积的基础。可见这节课的内容在整个教材体系中起着承上启下、举足轻重的作用。
学情分析:五年级的小学生虽然已经具有了一定的知识与生活经验,但知识和认知水平还存在一定的局限性,空间想象能力不够丰富,对图形的转化、公式的推导会有一定的难度。因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成的过程。
教学目标:根据课程标准、本节课的教学内容及学生实际水平特制定以下教学目标:
1、让学生利用方格纸和割补、拼摆等方法探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。
2、通过对
19.1.2 平行四边形的判定(2)
第四课时 19.1.2 平行四边形的判定(2)
【学习目标】
1. 掌握用一组对边平行且相等来判定平行四边形的方法。 2. 理解和领会三角形三角形中位线定理及其应用。
3. 会综合应用平行四边形的四种判定方法和性质来证明问题。 【重点难点】 重点:1.平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法; 2.理解并应用三角形中位线定理。
难点:1.平行四边形的判定定理与性质定理的综合应用。
2.理解三角形中位线定理的推导,感悟几何的思维方法。
【学习过程】 一、课前汇报
1. 平行四边形的定义是什么?
2. 平行四边形具有哪些性质?
1)边
2) 角 3)对角线
3. 你学过的平行四边形的判定方法有哪几个?