七年级上册数学二元一次方程组及其解法
“七年级上册数学二元一次方程组及其解法”相关的资料有哪些?“七年级上册数学二元一次方程组及其解法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“七年级上册数学二元一次方程组及其解法”相关范文大全或资料大全,欢迎大家分享。
七年级上册数学二元一次方程
七年级上册数学二元一次方程
第26讲二元一次方程
知识理解
1.已知方程:①;②x-x=0;③=3;④3x-=z;⑤2x-=3;
⑥x=-,其中是二元一次方程的有__________________.(填序号)2.已知方程组是二元一次方程组,则的值为_________.
3.二元一次方程2x-=l,则当x=3 时,=_____;当=3时,x=______.
4.若是方程x-3+=2的一个解,则=_________.
.写出一个以为解的二元一次方程组__________________.
6.在(1);(2);(3)这三对数值中,______是方程x+2=3的解;__________是方程2x-=l的解;因此,__________是方程组的解.(填序号)
7.已知方程x+3-4=0,用含的代数式表示x的式子是_____________;
当=l时,x=________;用含x的代数式表示的式子是_______________.
8.由方程4x+=9,用含x的式子表示为_______;用含的式子表示x为________.
9.方程2(x+)-3(-x)=3中,用含x的式子表示为_______;用含的式子表示x为________.
10.由,用含x的式子表示为_______
(人教版)七年级下册数学二元一次方程组教案
名师精编 精品教案
第八章 二元一次方程组 8.1二元一次方程组
教学目标:1.认识二元一次方程和二元一次方程组.
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.
教学重点:理解二元一次方程组的解的意义. 教学难点:求二元一次方程的正整数解. 教学方法指导探究,合作交流 教学资源ppt课件 教学课时2课时 教学过程:
第一课时新授课
一、问题导入
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分, 某队在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?
思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场 数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,胜场积分+负场积分=总积分. 这两个条件可以用方程x+y=10
2x+y=16 表示.
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都 是1,像这样的方程叫做二元一次方程. 把两个方程合在一起,写成
x+y=10
2x+y=16
像这样,把两个二元一次方程合在一起,就组成了一个二元
七年级二元一次方程组的解法 - 加减消元法
二元一次方程组的解法——加减消元法
●教学内容
人教版七年级下第八章二元一次方程组第二节 ●教学目标
1、会用加减法解二元一次方程组
2、进一步体会解二元一次方程组的基本思想——消元
3、通过研究解决问题的方法,培养学生合作交流意识与探索精神 ● 教学重点、难点
重点:用加减法解二元一次方程组
难点:探索如何用加减法将二元转化为一元的消元过程 ● 教学过程
一、 提出问题,探究方法
观察下列方程组中同一未知数系数之间的关系并思考新的消元方法
?x?y?22(1)(1)? 因为两个方程中y的系数相同,故由(1)
2x?y?40(2)?-(2)可消y(也可由(2)-(1)消y)
(2)??4x?10y?3.6(1) 因为两个方程中y的系数互为相反数,
?15x?10y?8(2)故由(1)+(2)可消y
归纳:两个二元一次方程中同一未知数的系数互为相反数或相同,把这两个方程两边分别相加或相减,就可消去这个未知数,得到一个一元一次方程,这种方法叫加减消元法,简称加减法
?3x?4y?16(1)因为方程组中y的系数成整数倍关系,故可由
?5x?2y?3(2)(3)?(1)+(2)×2消y
?3x?4y?16(1)首先要将方程组中的同一未知数系数化
七年级数学二元一次方程组(学生讲义)(DOC)
第一章 二元一次方程组
【知识要点】
1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。
①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;
③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。
2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。 3.二元一次方程组:
①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量; ③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:
注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。
5.会检验一对数值是不是一个二元一次方程组的解
6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想
二元一次方程组消元转化一元一次方程
四、解二元一次方程组的一般步骤
(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减
七年级数学二元一次方程组同步练习2
第八章《二元一次方程组》精练精析
提要:本章的考查重点是二元一次方程组的解法——代入法、加减法,以及列出二元一次方程组解简单应用题.难点是熟练地解二元一次方程组,解决难点的办法关键在于了解消元的思想方法,设法消去方程中的一个未知数,把“二元”变成“一元”(对于“三元”一次方程组,一般也要先消去一个未知数,变成“二元”,再变成“一元”).正确地列出二元一次方程组解简单应用题,关键在于正确地找出应用题中的两个条件(相等关系),并把它们表示成两个方程,这两个方程正好表示了应用题的全部含义.
习题:
一、填空题
1.一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是 . 2.已知甲、乙两人从相距36km的两地同时相向而行,1.8h相遇.如果甲比乙先走h,那么在乙出发后h与甲相遇.设甲、乙两人速度分别为xkm/h、ykm/h,则x= ,y= . 3.甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是 . 4.一队工人制造某种工件,若平均每人一天做
2013七年级数学二元一次方程组同步练习
《二元一次方程组》精练精析
提要:本章的考查重点是二元一次方程组的解法——代入法、加减法,以及列出二元一次方程组解简单应用题.难点是熟练地解二元一次方程组,解决难点的办法关键在于了解消元的思想方法,设法消去方程中的一个未知数,把“二元”变成“一元”(对于“三元”一次方程组,一般也要先消去一个未知数,变成“二元”,再变成“一元”).正确地列出二元一次方程组解简单应用题,关键在于正确地找出应用题中的两个条件(相等关系),并把它们表示成两个方程,这两个方程正好表示了应用题的全部含义.
习题:
一、填空题
1.一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是 .
2.已知甲、乙两人从相距36km的两地同时相向而行,1.8h相遇.如果甲比乙先走与甲相遇.设甲、乙两人速度分别为xkm/h、ykm/h,则x= ,y= . 3.甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是 .
4.一队工人制造某种工件,若平均每人一天做5件,全队一天就超额30件
第18讲 二元一次方程组及其解法
第18讲 二元一次方程组及其解法
考点·方法·破译
1.了解二元一次方程和二元一次方程组的概念;2.解二元一次方程的解和二元一次方程组的解的意义; 3.熟练掌握二元一次方程组的解法.
经典·考题·赏析
【例1】 已知下列方程2xm1+3yn3=5是二元一次方程,则m+n= . 【解法辅导】二元一次方程必须同时具备三个条件:
⑴这个方程中有且只有两个未知数;⑵含未知数的次数是1;⑶对未知数而言,构成方程的代数式是整式. 【变式题组】
01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由.
-
+
⑴2x+5y=16 (2)2x+y+z=3 (3)02.若方程2xa1+3=y2b
+
-5
1+y=21 (4)x2+2x+1=0 (5)2x+10xy=5 x是二元一次方程,则a= ,b= .
?1?4x2?3y?10?4x?y?12?7x?8y?5??2y?003.在下列四个方程组①?,②?,③?x,④?中,是二元一次方
x?45y?07xy?29???2x?4y?9??2x?3y?4程组的有 ( )A.1个 B.2个 C.3个 D.4个 【例2】二元一次方程组?
7.2.1二元一次方程组的解法
7.2.1二元一次方程组的解法————代入消元法
复习引入:1(1)已知a=1,b=3,则a+2b=_______ (2)已知2x+y=5,x=-2,则y=_______ 2(1)在二元一次方程x+3y=1的解中,当x=2时, 对应的y值是_________ (2)在方程2x+y=4中,用含x的式子表示y,则 y=______ ,用含y的式子表示x,则x=________
新知探究:尝试解方程组 y=2x-3 4x-3y=1
解方程组的基 本思想是什么? 通过怎样达到 的?
归纳用代入消元法解方程的步骤:
(1)在方程组中选一个系数比较简单的方程,将 其中一个未知数用含另一个未知数的代数式表示 出来; (2)将变形后的代数式代入另一个方程,消去一 个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得一个 未知数的 值 (4)将求得的未知数的值代入前面得得到的关系 中,即可求解出另一个未知数的值,并把求得 的两个数的值用符号{连接起来
例1.解方程组 3x-2y=4 (1) (2) x+3y=5
2x+5y=12 x+2y=6
x-y=1 (3) 2x+y=5
(4)
x+y=17 3x+y=17
(5)
x=3y+2 x+3y=8 (6)
4x-3y=17
二元一次方程组的解法 说课稿
二元一次方程组的解法 说课稿
尊敬的各位专家、各位评委:
上午好!我说课的题目是义务教育课程标准实验教科书《数学》七年级下册第八章第二节《消元---二元一次方程组的解法》的第一课时。我将从教材分析、教法选择和学法指导、教学程序设计和评价分析四个方面进行说课。其中教学程序设计将是我阐述的重点,将从六个方面说明。首先我来分析教材:
一、教材分析
(一)教材分析与处理
《消元---二元一次方程组的解法》是义务教育课程标准实验教科书《数学》七年级下册第八章
第二节的内容,这所以要把安排在此处,是基于以下两个方面的考虑:其一,学生已经学习了一元一次方程的解法,此时已经具备了接受二元一次方程组的解法的知识基础;其二,二元一次方程组的解法为今后解决实际生产和生活问题奠定坚实的基础。消元思想体现了数学学习中“化未知为已知”的化归思想方法,这种数学思想会一直影响着学生今后数学的学习。因此,本节内容起着承前启后的作用。
(二)教学重难点及确定依据
本节分两个课时,今天我们来研讨第一个课时,用代入法解二元一次方程组。首先我们来确定第一课时的教学重点和难点。
重点:用代入法解二元一次方程组的基本步骤。
难点:对代入消元法解方程组过程的理解。为什么要消元?怎样才能消元?,把“未知”转化
二元一次方程组的解法教案
二元一次方程组的解法(1) 宁陵县张弓镇初级中学 徐文静
教学目标:
一 .教学知识点
1 会用代入消元法解二元一次方程组
2 了解代入消元法解二元一次方程组的基本步骤 二 .能力训练要求
1 理解消元的思想,知道消元是一种重要的思想方法 2 会用代入消元法解二元一次方程组
3 能说出代入消元法解二元一次方程组的基本步骤 三 .情感与价值观要求
通过用代入消元法解二元一次方程组的过程,让学生体会转化的思想方
法,并增强他们的数学应用意识和能力。
教学重点:
会用代入消元法解二元一次方程组
教学难点:
理解代入消元法,灵活消元,解二元一次方程组。
教学方法:
讲练结合法
教具准备:幻灯片9张 教学过程:
(一)巧设现实情景,引入新课
上一节课,我们学习了二元一次方程,二元一次方程组的有关概念,这一节 我们来学习二元一次方程组的解法。
例1:篮球联赛中,每场比赛都要分出胜负每队胜一场得2分,负一场得1分,队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?
(1)若设这个队胜场数是 场,负场数是 场,可列方程组
(2)若只设一个未知数,设这个队胜