时域有限差分法(基于MATLAB)
“时域有限差分法(基于MATLAB)”相关的资料有哪些?“时域有限差分法(基于MATLAB)”相关的范文有哪些?怎么写?下面是小编为您精心整理的“时域有限差分法(基于MATLAB)”相关范文大全或资料大全,欢迎大家分享。
时域有限差分法对平面TE波的MATLAB仿真
时域有限差分法对平面TE波的
MATLAB仿真
摘 要
时域有限差分法是由有限差分法发展出来的数值计算方法。自1966年Yee
在其论文中首次提出时域有限差分以来,时域有限差分法在电磁研究领域得到了广泛的应用。主要有分析辐射条线、微波器件和导行波结构的研究、散射和雷达截面计算、分析周期结构、电子封装和电磁兼容的分析、核电磁脉冲的传播和散射以及在地面的反射及对电缆传输线的干扰、微光学元器件中光的传播和衍射特性等等。
由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。
文中主要谈到了关于高斯制下完全匹配层的差分公式的问题,通过MATLAB程序对TE波进行了仿真,模拟了高斯制下完全匹配层中磁场分量瞬态分布。得到了相应的磁场幅值效果图。
时域有限差分法对平面TE波的MATLAB仿真
时域有限差分法对平面TE波的
MATLAB仿真
摘 要
时域有限差分法是由有限差分法发展出来的数值计算方法。自1966年Yee
在其论文中首次提出时域有限差分以来,时域有限差分法在电磁研究领域得到了广泛的应用。主要有分析辐射条线、微波器件和导行波结构的研究、散射和雷达截面计算、分析周期结构、电子封装和电磁兼容的分析、核电磁脉冲的传播和散射以及在地面的反射及对电缆传输线的干扰、微光学元器件中光的传播和衍射特性等等。
由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。
文中主要谈到了关于高斯制下完全匹配层的差分公式的问题,通过MATLAB程序对TE波进行了仿真,模拟了高斯制下完全匹配层中磁场分量瞬态分布。得到了相应的磁场幅值效果图。
一维导热方程 有限差分法 matlab实现
第五次作业(前三题写在作业纸上)
一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf文件,热扩散系数α=const,
?T?2T??2 ?t?x1. 用Tylaor展开法推导出FTCS格式的差分方程
2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。
4. 编写M文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得
到,添加,修改后得到。) function rechuandaopde
%以下所用数据,除了t的范围我根据题目要求取到了20000,其余均从pdf中得来 a=0.00001;%a的取值 xspan=[0 1];%x的取值范围 tspan=[0 20000];%t的取值范围
ngrid=[100 10];%分割的份数,前面的是t轴的,后面的是x轴的 f=@(x)0;%初值
g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二
[T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t);
mesh
一维导热方程 有限差分法 matlab实现
第五次作业(前三题写在作业纸上)
一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf文件,热扩散系数α=const,
?T?2T??2 ?t?x1. 用Tylaor展开法推导出FTCS格式的差分方程
2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。
4. 编写M文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得
到,添加,修改后得到。) function rechuandaopde
%以下所用数据,除了t的范围我根据题目要求取到了20000,其余均从pdf中得来 a=0.00001;%a的取值 xspan=[0 1];%x的取值范围 tspan=[0 20000];%t的取值范围
ngrid=[100 10];%分割的份数,前面的是t轴的,后面的是x轴的 f=@(x)0;%初值
g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二
[T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t);
mesh
时域有限差分法(FDTD算法)的基本原理及仿真
时域有限差分法(FDTD算法)
时域有限差分法是1966年K.S.Yee发表在AP上的一篇论文建立起来的,后被称为Yee网格空间离散方式。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解, 通过建立时间离散的递进序列, 在相互交织的网格空间中交替计算电场和磁场。
FDTD算法的基本思想是把带时间变量的Maxwell旋度方程转化为差分形式,模拟出电子脉冲和理想导体作用的时域响应。需要考虑的三点是差分格式、解的稳定性、吸收边界条件。有限差分通常采用的步骤是:采用一定的网格划分方式离散化场域;对场内的偏微分方程及各种边界条件进行差分离散化处理,建立差分格式,得到差分方程组;结合选定的代数方程组的解法,编制程序,求边值问题的数值解。 1.FDTD的基本原理
FDTD方法由Maxwell旋度方程的微分形式出发,利用二阶精度的中心差分近似,直接将微分运算转换为差分运算,这样达到了在一定体积内和一段时间上对连续电磁场数据的抽样压缩。
Maxwell方程的旋度方程组为:
??H???H?E??mH (1) ??E ??E????t?t在直角坐标系中,(1)式可化为如下六个标量方程:
??E?E?Ex?
时域有限差分法(FDTD算法)的基本原理及仿真
时域有限差分法(FDTD算法)
时域有限差分法是1966年K.S.Yee发表在AP上的一篇论文建立起来的,后被称为Yee网格空间离散方式。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解, 通过建立时间离散的递进序列, 在相互交织的网格空间中交替计算电场和磁场。
FDTD算法的基本思想是把带时间变量的Maxwell旋度方程转化为差分形式,模拟出电子脉冲和理想导体作用的时域响应。需要考虑的三点是差分格式、解的稳定性、吸收边界条件。有限差分通常采用的步骤是:采用一定的网格划分方式离散化场域;对场内的偏微分方程及各种边界条件进行差分离散化处理,建立差分格式,得到差分方程组;结合选定的代数方程组的解法,编制程序,求边值问题的数值解。 1.FDTD的基本原理
FDTD方法由Maxwell旋度方程的微分形式出发,利用二阶精度的中心差分近似,直接将微分运算转换为差分运算,这样达到了在一定体积内和一段时间上对连续电磁场数据的抽样压缩。
Maxwell方程的旋度方程组为:
??H???H?E??mH (1) ??E ??E????t?t在直角坐标系中,(1)式可化为如下六个标量方程:
??E?E?Ex?
有限差分法及其应用
有限差分法及其应用
1有限差分法简介
有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
2有限差分法的数学基础
有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。
3有限差分解题基本步骤
有限差分法的主要解题步骤如下: 1) 建立微分方程
根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。 2) 构建差分格式
首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微
matlab实现有限差分法计算电场强度(最新)
实验一:有限差分法研究静电场边值问题
实验报告人: 年级和班级: 学号:
1. 实验用软件工具: Matlab 2. 实验原理:电磁场课本P36-38
1) 差分方程
2) 差分方程组的解
简单迭代法
高斯-赛德尔迭代法 逐次超松弛法
3. 实验步骤: 1)简单迭代法 程序:
hx=41;hy=21; v1=zeros(hy,hx); v1(hy,:)=zeros(1,hx); v1(1,:)=ones(1,hx)*100; v1(:,1)=zeros(hy,1); v1(:,hx)=zeros(hy,1); v1
v2=v1;maxt=1;t=0; k=0;
while(maxt>1e-5) k=k+1; maxt=0; for i=2:hy-1 for j=2:hx-1
v2(i,j)=(v1(i,j+1)+v1(i+1,j)+v1(i-1,j)+v1(i,j-1))/4; t=abs(v2(i,j)-v1(i,j)); if(t>maxt) maxt=t;end end end v1=v2; end v2 k clf
subplot(1,2,1),m
有限元、边界元、有限差分法的区别
penglining 发表于 2007-5-16 08:26 有限元法、边界元法、有限差分法的区别和各自的优点
请问:有限元法、边界元法、有限差分法等方法有哪些区别和各自的优点?尤其是在声学方面。 谢谢!
fossiler 发表于 2007-5-19 14:00 网格的跑分上不同,差分要求模型规则,有限元可以是任意不规则模型,
hillyuan 发表于 2007-5-21 17:45 FEM: irregular grid-> easy to describe complex shape, hard in mesh generation
\\.a4hj
FDM: regular mesh -> easy in grid generation, hard to describe complex shape=> less accurate than FEM
BEM: irregular mesh in boundary -> mesh generation much easier than that of FEM. need much less computation resource than the above two. BUT ne
基于背景差分法的物体识别
基于背景差分法的物体识别 OBJECT RECOGNITION BY BACKGROUND DIFFERENCE
METHOD
专 业: 自动化 姓 名: 指 导 教 师: 申请学位级别: 论文提交日期: 学位授予单位:
摘 要
图像识别技术在很多领域都是产业现代化的基础,所以在当今社会它成为了研究的热门学科。由于被测物体会由于时间的不同,背景的不同,气候的不同,被测物体会表现出不同的外形特征,具有错综复杂和瞬间转变的性质[1],所以图像识别的准确率一直是一个难以解决的课题。而基于背景差分的图像识别技术则能很好地解决这一困难的问题,它是整个图像识别领域中最基础并且可靠性最高的一门科学[2]。这种方法以将背景图片与实时图像作差分的方法有效提高普通图像识别方法的准确度
[3]
,也可以对运动物体做出准确性较高的识别,并且具有较
快的处理速度,能在OpenCV1.0的帮助下完成目标。目前,基于背景差分的图像识别主要应用于车辆流量检测技术[4]、车牌检测[5]、弱信号的目标检测、稻米粒优劣的判断、运动人体检测等领域。本文使用USB外接摄像头从外界获得背景与被测视频流,在Windows系统下利