多元线性回归t检验和f检验
“多元线性回归t检验和f检验”相关的资料有哪些?“多元线性回归t检验和f检验”相关的范文有哪些?怎么写?下面是小编为您精心整理的“多元线性回归t检验和f检验”相关范文大全或资料大全,欢迎大家分享。
3.3__多元线性回归检验
统计应用
§3.3 多元线性回归模型的统计检验 一、拟合优度检验 方程的显著性检验(F检验) (F检验 二、方程的显著性检验(F检验) 变量的显著性检验( 检验) 三、变量的显著性检验(t检验) 四、参数的置信区间
统计应用
一、拟合优度检验 1、可决系数与调整的可决系数 、总离差平方和的分解
则
TSS = Σ(Yi Y ) 2 = Σ((Yi Yi ) + (Yi Y )) 2 = Σ(Yi Yi ) 2 + 2Σ(Yi Yi )(Yi Y ) + Σ(Yi Y ) 2
统计应用
由于
∑ (Y Y )(Y Y ) = ∑ e (Y Y ) = β ∑e + β ∑e X +L+ β ∑e Xi i i i0 i 1 i 1i k i
ki
+ Y ∑ ei
=0
所以有: ) 2 + ∑ (Y Y ) 2 = RSS + ESS TSS = ∑ (Yi Yi i
注意: 注意:一个有趣的现象
(Y Y ) = (Y Y ) + (Y Y ) (Y Y ) ≠ (Y Y ) + (Y Y ) ∑ (Y Y ) = ∑ (Y
T检验 F检验和卡方检验
什么是Z检验?
Z检验是一般用于大样本(即样本容量大于30)平均值差异性检验的方法。它是用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数>平均数的差异是否显著。
当已知标准差时,验证一组数的均值是否与某一期望值相等时,用Z检验。
Z检验的步骤
第一步:建立虚无假设,即先假定两个平均数之间没有显著差异。
第二步:计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法。 1、如果检验一个样本平均数()与一个已知的总体平均数(μ0)的差异是否显著。其Z值计算公式为: 其中:
是检验样本的平均数; μ0是已知总体的平均数; S是样本的方差; n是样本容量。
2、如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显著。其Z值计算公式为: 其中:
是样本1,样本2的平均数; S1,S2是样本1,样本2的标准差; n1,n2是样本1,样本2的容量。
第三步:比较计算所得Z值与理论Z值,推断发生的概率,依据Z值与差异显著性关系表作出判断。如下表所示:
第四步:根据是以上分析,结合具体情况,作出结论。 Z检验举例
T检验 F检验和卡方检验
什么是Z检验?
Z检验是一般用于大样本(即样本容量大于30)平均值差异性检验的方法。它是用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数>平均数的差异是否显著。
当已知标准差时,验证一组数的均值是否与某一期望值相等时,用Z检验。
Z检验的步骤
第一步:建立虚无假设,即先假定两个平均数之间没有显著差异。
第二步:计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法。 1、如果检验一个样本平均数()与一个已知的总体平均数(μ0)的差异是否显著。其Z值计算公式为: 其中:
是检验样本的平均数; μ0是已知总体的平均数; S是样本的方差; n是样本容量。
2、如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显著。其Z值计算公式为: 其中:
是样本1,样本2的平均数; S1,S2是样本1,样本2的标准差; n1,n2是样本1,样本2的容量。
第三步:比较计算所得Z值与理论Z值,推断发生的概率,依据Z值与差异显著性关系表作出判断。如下表所示:
第四步:根据是以上分析,结合具体情况,作出结论。 Z检验举例
4 多元线性回归模型统计检验
§2.4 多元线性回归模型的 统计检验和区间估计 Statistical Test and Interval Estimation of Multiple Linear Regression Model拟合优度检验 AIC和SC准则 方程的显著性检验(F 检验) 变量的显著性检验(t 检验) 参数估计量的区间估计 预测值的区间估计 受约束回归 参数稳定性检验
说明
由计量经济模型的数理统计理论要求的以多元线性模型为例 包括拟合优度检验、总体显著性检验、变量显 著性检验、偏回归系数约束检验、模型对时间 的稳定性检验、参数估计量的区间估计、预测 值的区间估计、受约束回归。
一、拟合优度检验 (Testing of Simulation Level)1、概念 检验模型对样本观测值的拟合程度 通过构造一个可以表征拟合程度的统计量 来实现。问题:采用普通最小二乘估计方法,已经保证了 模型最好地拟合了样本观察值,为什么还要检验 拟合程度?
2、总体平方和、回归平方和、残差平方和定义
TSS (Yi Y )2 总体平方和(Total Sum of Squares) Y )2 ESS (
T检验 F检验和卡方检验
什么是Z检验?
Z检验是一般用于大样本(即样本容量大于30)平均值差异性检验的方法。它是用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数>平均数的差异是否显著。
当已知标准差时,验证一组数的均值是否与某一期望值相等时,用Z检验。
Z检验的步骤
第一步:建立虚无假设,即先假定两个平均数之间没有显著差异。
第二步:计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法。 1、如果检验一个样本平均数()与一个已知的总体平均数(μ0)的差异是否显著。其Z值计算公式为: 其中:
是检验样本的平均数; μ0是已知总体的平均数; S是样本的方差; n是样本容量。
2、如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显著。其Z值计算公式为: 其中:
是样本1,样本2的平均数; S1,S2是样本1,样本2的标准差; n1,n2是样本1,样本2的容量。
第三步:比较计算所得Z值与理论Z值,推断发生的概率,依据Z值与差异显著性关系表作出判断。如下表所示:
第四步:根据是以上分析,结合具体情况,作出结论。 Z检验举例
实验三 多元线性回归模型的估计和检验
计量经济学实验报告,多元线性回归模型,估计和检验
实 验 报 告
课程名称: 计量经济学 实验项目: 实验三 多元线性回归模型的
实验类型:综合性□ 设计性□ 验证性 专业班别: 11本国贸5班 姓 名: 学 号: 实验课室: 厚德A207 指导教师: 实验日期: 2014-2-25
广东商学院华商学院教务处 制
计量经济学实验报告,多元线性回归模型,估计和检验
一、实验项目训练方案
计量经济学实验报告,多元线性回归模型,估计和检验
2.进行因果关系检验(GDPB同ZC,GDPB同RY)(结果控制在本页) (1)GDPB同ZC的因果分析 Pairwise Granger Causality Tests Date: 12/01/13 Time: 14:39
Sample: 1978 2005 Lags: 2 Null Hypothesis: ZC does not Granger Cause GDPB GDPB doe
多元线性回归
多元线性回归模型
一、多元线性回归模型的一般形式
设随机变量y与一般变量x1,x2,?,xp的线性回归模型为:
y??0??1x1??2x2????pxp?? 其中:
写成矩阵形式为:y?X???
?1?y1????1y2???y? X?????????y??n??1x11x21?xn1x12x22?xn2???x1p???0???1??????x2p?1?? ???? ???2?
?????????????xnp?????n???p??二、多元线性回归模型的基本假定
1、解释变量x1,x2,?,xp是确定性变量,不是随机变量,且要求
ran(kX)?p?1?n。这里的rank(X)?p?1?n表明设计矩阵X中自变量列之间
不相关,样本容量的个数应大于解释变量的个数,X是一满秩矩阵。
E(?i)?0,i?1,2,?,n????2,i?j2、随机误差项具有0均值和等方差,即:?
cov(?i,?j)??,(i,j?1,2,?,n)??0,i?j?E(?i)?0,即假设观测值没有系统误差,随机误差?i的平均值为0,随机误差?i的协方差为0表明随机误差项在不同的样本点之间是不相关的(在正态假定下即
为独立),不存在序列相关,并且具有相同的精
多元线性回归模型
第三章 多元线性回归模型
基本概念
(1)多元线性回归模型; (2)偏回归系数;
(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题
1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性
的过程中,哪些基本假设起了作用?
2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?
3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?
X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(
X4)、睡觉()、 娱乐()
)所用时间的关系的研究中,建立如下回归模型:
Y??0??1X1??2X2??3X3??4X4?u
如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?
5.表3-1给出三变量模型的回归结果。
多元线性回归、逐步回归
多元线性回归、逐步回归
关键词:非线性回归、多元线性回归、逐步回归、散点图程序、残差图程序、MATLAB 练习1
在M文件中建立函数y?a(1?be?cx),其中a、b、c为待定的参数。 程序7
fun=inline('b(1)*(1-b(2)*exp(-b(3)*x))','b','x'); 练习2
选取指数函数y?aebt对例1进行非线性回归:
(1)在同一坐标系内作出原始数据与拟合结果的散点图。 (2)预测照射16次后的细菌数目
(3)给出模型参数的置信度为95%的置信区间,并给出模型交互图形。 程序8
[a,b]=solve('5.8636=log(a)+b','2.7081=log(a)+15*b')%求解初值 x=1:15;
y= [352 211 197 160 142 106 104 60 56 38 36 32 21 19 15]; fun=inline('b(1)*exp(b(2)*x)','b','x');%建立函数 b0=[440.9771,-0.2254];
[beta,r,J]=nlinfit(x,y,fun,b0);%非线性拟合命令;其中,beta表示最佳回归系数的估计值,r是残差,J是雅可比矩阵
beta%输
多元线性回归模型
第三章 多元线性回归模型
基本概念
(1)多元线性回归模型; (2)偏回归系数;
(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题
1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性
的过程中,哪些基本假设起了作用?
2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?
3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?
X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(
X4)、睡觉()、 娱乐()
)所用时间的关系的研究中,建立如下回归模型:
Y??0??1X1??2X2??3X3??4X4?u
如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?
5.表3-1给出三变量模型的回归结果。