椭圆周长的近似公式
“椭圆周长的近似公式”相关的资料有哪些?“椭圆周长的近似公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“椭圆周长的近似公式”相关范文大全或资料大全,欢迎大家分享。
椭圆周长近似公式
年第刀‘刀
期
数学通报
梅,
,
刀‘刀
办,
,
‘
文
中」的推广是不同的那里相应于三维空间,,
办由此可以验证卫‘
式成立
但
‘
式不成‘
的情形是分别在四面体四个面或其延展面上的四个点共面的条件参考资料刘毅
此例表明本文推广定理的结论不能取的形式即梅耐劳斯定理和塞瓦定理的空间推广,
,
三维空间中塞瓦定理
数学通报
,
定理的结论形式是不尽相同的最后我们指出,
张晗方
定理的高维推广数学通报
,
梅耐劳斯定理的本文推广与
椭圆周长近似公式周祖遣首都师大数学系
设椭圆的长半轴为的理论知,
,
短半轴为
,
由定积分
由椭圆的两个半轴的各种平均值,
和
,
使我们想到它们
椭圆的周长一‘
为
如
关
万
‘丫一“
‘‘‘一“
,
‘
,
,
其中函数表示,
止二二,
训了灭丁丽二是椭圆的离心率
,
‘
,
,
、
、
、
这是第二
一
丽了
可嚓正好与半径为、饭石的圆面,
类椭圆积分
它的被积函数的原函数不能用初等
积分值必须利用近似积分法或展开成,
等等椭圆的面积
无穷级数来求出
也可以由查椭圆积分表得到、
利用级数公式二二、
积相等因而我们有理由相信以不等式中各数。为半径的圆周长丽句及币淤耳甲了武
骊的
都可作为椭圆周长的近似值
为了将这些值与公
一
恤
干二一
几
艺一一一一一蔽一一一一一一
…
丁’
一几‘
山
式
作精确比较
,
下面我们分别将它们按
正整次幂展成幂级数石训了二飞百了
一,
椭圆周长公式的推导、证明、检验、评价与应用
椭圆周长公式的推导、证明、检验、评价与应用
-----------三探椭圆周长的计算(终结篇)
四川省美姑县中学 周钰承
★ 关键词:椭圆周长,标准公式,近似计算,初等公式。
★ 内容提要:本文搜集了各种椭圆周长公式。无论是标准公式还是近似公式,
本文将对部分公式给予证明,或推导,或否定,或检验、评价与应用,希
望广大读者喜欢。
★ 目录:一、椭圆周长标准公式的推导与椭圆周长准确值的计算 二、两个高精度的椭圆周长初等公式 三、椭圆周长公式集锦与评价
一、椭圆周长的标准公式的推导与椭圆周长精确值的计算
宇宙间宏观物体的运动轨迹大都是椭圆,但其周长不能准确的计算出来。经过数学家的计算与证明,最终得出椭圆周长没有准确的初等公式,但可以用椭圆积分的级数形式表示。下面对椭圆周长的一个标准公式进行证明和计算。
在平面直角坐标系内,椭圆的标准方程是:
xa22?yb22?1,a?0,b?0.
参数方程是: x?acos?,y?bsin?,?0???2?? 函数图像为:
若某条光滑曲线,能用参数方程表示:
x?X?t?,y?Y?t?
??t??,该曲线长度可表示为:
L?22????????X't?Y'tdt
圆周率π的近似计算方法
圆周率π的近似计算方法
班级 学号 姓名
众所周知,圆周率π是平面上圆的周长与直径之比,它等于3.141 592 6…。古代人把3作为它的近似值。π是一个非常重要的常数.一位德国数学家评论道:\历史上一个
国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志.\古
今中外很多数学家都孜孜不倦地寻求过π值的计算方法.
古人计算圆周率,一般是用割圆法(不断地利用勾股定理,来计算正N边形的边长)。即用圆的内接或外切正多边形来逼近圆的周长。公元263年,刘徽通过提出著名的割圆术,得出 π =3.14,通常称为\徽率\,他指出这是不足近似值。割圆术用内接正多边形就确定出了圆周率的上、下界,他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率 π =3927/1250 =3.1416。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。后来祖冲之通过割圆法求得圆周率3.1415926 < π < 3.1415927 ,得到 π 的两个近似分数即:约率为22/7;密率为355/113。他算出的 π 的8位可靠数字,不但在当时是最精
椭圆的焦点弦长公式
椭圆的焦点弦长公式
F1F2?2ab2222a?ccos?及其应用
在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有命题:
若椭圆的焦点弦F1F2所在直线的倾斜角为?,a、b、c分别表示椭圆的长半轴长、
2ab2222短半轴长和焦半距,则有F1F2?a?ccos?。
上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。
例1、已知椭圆的长轴长AB?8,焦距F1F2?42,过椭圆的焦点F1作一直线交椭圆于P、Q两点,设?PF1X??(0????),当?取什么值时,PQ等于椭圆的短轴长?
分析:由题意可知PQ是椭圆的焦点弦,且a?4,c?22,从而b?22,故由焦
2ab2222点弦长公式F1F2?a?ccos?及题设可得:
2?4?(22)16?8cos?22?42,解得
cos???2?2,即??arccos2?2或??arccos2?2。
例2、在直角坐标系中,已知椭圆E的一个焦点为F(3,1),相应于F的准线为Y轴,
16?直线l通过点F,且倾斜角为,又直线l被椭圆E截得的线段的长度为,求椭圆E的
35方程。
分析:由题意可设椭圆E的方程为
(x?c?3)a22?(y?1)b22?1,又椭圆E相应于F的
椭圆的焦点弦长公式
椭圆的焦点弦长公式
F1F2?2ab2222a?ccos?及其应用
在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有命题:
若椭圆的焦点弦F1F2所在直线的倾斜角为?,a、b、c分别表示椭圆的长半轴长、
2ab2222短半轴长和焦半距,则有F1F2?a?ccos?。
上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。
例1、已知椭圆的长轴长AB?8,焦距F1F2?42,过椭圆的焦点F1作一直线交椭圆于P、Q两点,设?PF1X??(0????),当?取什么值时,PQ等于椭圆的短轴长?
分析:由题意可知PQ是椭圆的焦点弦,且a?4,c?22,从而b?22,故由焦
2ab2222点弦长公式F1F2?a?ccos?及题设可得:
2?4?(22)16?8cos?22?42,解得
cos???2?2,即??arccos2?2或??arccos2?2。
例2、在直角坐标系中,已知椭圆E的一个焦点为F(3,1),相应于F的准线为Y轴,
16?直线l通过点F,且倾斜角为,又直线l被椭圆E截得的线段的长度为,求椭圆E的
35方程。
分析:由题意可设椭圆E的方程为
(x?c?3)a22?(y?1)b22?1,又椭圆E相应于F的
用近似公式开平方
用近似公式开平方
我上初中的时候,计算器还没普及,那时每个学生一本《中学数学用表》,可以查到一个数平方根的4位有效数字。课本里有笔算开平方的方法,但要列竖式,感觉麻烦,没多久就忘了。高中的时候,知道有近似公式,但不知道怎么用。最近一个偶然的机会,发现一种简单的近似算法可以很方便地算出一个数平方根的4位有效数字,误差最大不会超过最后一位有效数字的一个点,在没有电脑、计算器的情况下,倒可以一用,我的感觉,比列竖式简单。
一、近似公式
1.如果C=a2±b,且b≤a,那么√C≈a±b/2a 一般使用这个公式即可达到四位有效数字的要求。这个公式计算出的结果比真实值略大,如果需要更精确的近似值,可以用下面的公式
2.如果C=a2±b,且b≤a,那么√C≈a±b/2a-b2/8a3
这个公式比第一个公式多减了b2/8a3,稍麻烦,但精确度可达六七位有效数字,在百度百科里,我称之为“精确开方公式”,一般只在需要更精确数值或某些特殊情况下使用。
下面介绍具体怎么用。 二、公式用法
1.四位数的平方根。也就是1000---9999的平方根 首先估计一下最接近方根的两位数。个位数是0的两位数的平方根容易很算出来,如702=490
直线与椭圆的位置关系(2课)_椭圆弦长公式 (1)
直线与椭圆的位置关系(2课)_椭圆弦长公式 (1)
椭圆的简单几何性质(三)直线与椭圆的位置关系
直线与椭圆的位置关系(2课)_椭圆弦长公式 (1)
椭圆的简单几何性质(三)前面我们用椭圆方程发现了一些椭圆的 几何性质 , 可以体会到坐标法研究几何图形 的重要作用 , 其实通过坐标法许多几何图形 问题都可以转化为方程知识来处理. 当然具体考虑问题,我们的思维要灵活, 用形直觉,以数解形,数形结合思维这能大大 提高分析问题、解决问题的能力. 本节课 , 我们来学习几个有关直线与椭 圆的综合问题.
直线与椭圆的位置关系(2课)_椭圆弦长公式 (1)
问题1:直线与圆的位置关系有哪几种?
怎么判断它们之间的位置关系? d=r 几何法: d>r 代数法: <0 =0
d<r
>0
直线与椭圆的位置关系(2课)_椭圆弦长公式 (1)
直线与椭圆的位置关系的判定问题2:椭圆与直线的位置关系?
Ax+By+C=0 代数法 2 2 由方程组: x y 2 1 ----求解直线与二次曲线有 2 a b 2 mx +nx+p=0(m≠ 0) 关问题的通法。
= n2-4mp>0 =0 <0方程组有两解 方程组有一解 方程组无解 两个交点 一个交点 无交
六年级圆周长与面积的计算(习题)
六年级,圆,周长,面积,计算,习题
【基础知识训练】
例1、填表
例2、剪圆问题
在一个长6分米,宽2分米的长方形内剪一个最大的圆,圆的直径是( ),周长是( ),面积是( )。最多可能剪( )这样的圆。
例3、组合问题的求解,求阴影部分的面积。
12cm
六年级,圆,周长,面积,计算,习题
例4、把一个圆平均分成若干个小扇形,再拼成一个近似的长方形,这个长方形的长是9.42
dm,周长是24.84dm。这个圆的周长是( ),面积是( )。
例5、一辆自行车轮胎的外直径为72cm,如果平均每分钟转100周。通过一座2260.8m的大桥,需要几分钟?
例6、一个圆形花坛,直径5米,在它周围有一条宽1米的环形鹅卵石小路,小路的面积是多少平方米?
例7、用一根长16dm的铁丝做一个圆形铁圈接头处是0.3dm,这个铁圈的直径是多少dm?
六年级,圆,周长,面积,计算,习题
【基础巩固】 一、填空。
1、如果圆的半径扩大2倍,那么圆的直径扩大( )倍,那么圆的周长扩大( )倍。
2、一个车轮的直径为55cm,车轮转动一周,大约前进( )
周测卷十一 圆锥曲线椭圆周测专练 - 图文
衡水万卷周测卷十一文数
圆锥曲线椭圆周测专练
姓名:__________班级:__________考号:__________ 题号 得分 一 二 三 总分 x2y2x2y28.已知椭圆C1:??1,双曲线C2:2?2?1(m,n?0),椭圆C1的焦点和长轴端点分别是双曲线C2的顶点和
mn43焦点,则双曲线C2的渐近线必经过点( )
A.(2,3) B.(2,3) C.(3,1) D. (3,?3) 9.若实数x,y满足x2?4y2?4,则
一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一个选项是符合题目要求
的)
11.已知椭圆的中心在原点,离心率e?,且它的一个焦点与抛物线y2??4x的焦点重合,则此椭圆方程为( ).
2222x2x2xyxy22A.??1 B.??1 C.?y?1 D.?y2?1
2443862.图中共顶点的椭圆①.②与双曲线③.④的离心率分别为
e1﹑e2﹑e3﹑e4,其大小关系为( )
A.e1?e2?e3?e4 B.e
椭圆型封头表面积计算公式
提供封头表面积计算方法
第 3期20 0 7年 7月
锅
炉
制
造
No 3 .
BOI R MANUF LE ACTURI NG
J 12 7 u. O0
文章编号: N 3—14 (0 7 0 0 6 0 C2 29 20 )3— 0 6— 4
椭圆封头表面积计算公式的讨论刘超平邱宗君陈莉蓉吴宗东,,,(. 1新疆时代石油工程有限公司,疆克拉玛依 84 0 2长庆油田生产运行处,西西安 7 0 2 )新 3 00;.陕 10 1
摘
要:通过对椭圆封头表面积的两个公式的推导及数值验算,出 J4 4 2 0得 B 7 6— 0 2给出的公式为精确计算公
式,并分析另一公式误差存在的原因及与影响误差大小的因素。 关键词:椭球;圆形封头;椭表面积;误差中图分类号:Q 5 T 02文献标识码: A
Dic so lulto r u a o l o d l s usin Cac a in Fo m l fEl ps i a i He d r S fc e a e ura e Ar aL u Ch o n i a pig’ QuZ o g n, hnLrn W o g o g i h nj’ C e i g, uZ n d n’ u o,
( . eD