立体几何求法向量

“立体几何求法向量”相关的资料有哪些?“立体几何求法向量”相关的范文有哪些?怎么写?下面是小编为您精心整理的“立体几何求法向量”相关范文大全或资料大全,欢迎大家分享。

空间向量与立体几何

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

关于空间向量与立体几何

1 空间向量与立体几何

一、平行与垂直问题

(一) 平行

线线平行 线面平行 面面平行 注意:这里的线线平行包括线线重合,线面平行包括直线在平面内,面面平行包括面面重合。

(二) 垂直

线线垂直 线面垂直 面面垂直 注意:画出图形理解结论

二、夹角与距离问题

(一) 夹角

(二)距离

点、直线、平面之间的距离有7种。点到平面的距离是重点.

1.已知四棱锥P A B C D -的底面为直角梯形,//A B D C ,

设直线,l m 的方向向量分别为,a b ,平面 ,αβ的法向量分别为,u v ,则

l ∥m ?a ∥b a k b ?=

l ∥α?a

u ⊥ 0a u ??=

α∥β?u ∥v .u k v ?=

设直线,l m 的方向向量分别为

,a b ,平面 ,αβ的法向量分别为,u v ,则

l ⊥α?a ∥u a k u ?= ;

l ⊥m ?a ⊥b 0a b ??=

α⊥β?u ⊥v .0=??v u

设直线,l m 的方向向量分别为,a b ,平面,αβ 的法向量分别为,u v ,则

①两直线l ,m 所成的角为θ(02π

θ≤≤),cos a b

a b

θ?=

②直线l 与平面α

专题十 空间向量与立体几何

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

专题十 空间向量与立体几何

【知识点总结】

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性 2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

?????OP??a(??R)

?????????????? ?????????????? OB?OA?AB?a?bBA?OA?OB?a?b;

;

????运算律:⑴加法交换律:a?b?b?a

??????⑵加法结合律:(a?b)?c?a?(b?c)

????⑶数乘分配律:?(a?b)??a??b

运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那

??么这些向量也叫做共线向量或平行向量,a平行于b,记作。

??????(2)共线向量定理:空间任意两个向量a、b(b≠0),a//b存

??在实数λ,使a=λb。

??a//b(3)三点共线:A、B、C三点共线<=>AB??AC <=>OC?xOA?yOB(其中x?y?1) (4)与a共线的单位向

第3章 空间向量与立体几何 §3. 2 立体几何中的向量方法(一) -

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

§3.2 立体几何中的向量方法 (一>

—— 平行与垂直关系的向量证法

知识点一 求平面的法向量

已知平面α经过三点A(1,2,3>,B(2,0,-1>,C(3,-2,0>,试求平面α的一个法向量.

解∵A(1,2,3>,B(2,0,-1>,C(3,-2,0>,

=(1,-2,-4>,错误!=(1,-2,-4>, 设平面α的法向量为n=(x,y,z>. 依题意,应有n·

=0, n·错误!=0.

即错误!,解得错误!.令y=1,则x=2.b5E2RGbCAP ∴平面α的一个法向量为n=(2,1,0>.

【反思感悟】 用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,列出方程组,取其中一组解(非零向量>即可.p1EanqFDPw 在正方体ABCD-A1B1C1D1中,E,F分别是BB1,DC的中点,求证:

是平面A1D1F的法向量.

DXDiTa9E3d 证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则的法向量.

证明

是平面A1D1F

设正方体的棱长为1,建立如图所示的空间直角坐标系,则 A(1,0,0>,E错误!,RTCrpUDGiT =错误!..D1=(0,0,1>,5PCzVD7HxA F错误!,A1(1,0,1>.jLBHr

《立体几何中的向量方法》教学设计

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

《立体几何中的向量方法》教学设计(2)

【教学目标】利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题. 【教学重点】:坐标法与向量法结合.

【教学难点】:适当地建立空间直角坐标系及添加辅助线. 【教学课时】:1课时 【课前准备】:课题 【教学过程设计】:

(1)点到平面的距离: 1.(一般)传统方法:

利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离. 在Rt?PAO中,

??O?PdnAsin??d|AP|?d?|AP|sin?

l?P又sin??|AP?n||AP||n|

?dn?d?|AP?n||n|A?O(其中AP为斜向量,n为法向量)

例1:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.

分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离.

解:如图,设CD?4i,CB?4j,CG?2

立体几何中的,向量方法(坐标法)

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

高二数学学案 教案编写: 审核人: 高二数学组 使用时间: 编号:1

3.2.立体几何中的向量方法(坐标法) 【学习目标】熟练掌握解决立体几何问题的坐标方法; 【学习重点】坐标法解决立体几何问题的三个步骤; 【学习难点】立体几何问题到向量坐标问题的转化; 【学习过程】 1、 直线的方向向量: 。 2、平面的法向量: 。 3、 例题2:如图二面角中α---L---β中AC、BD都与L垂直AC=a BD=b CD=c AB=d 求二面角α---L---β的余弦值 F'βB C αDlA例题讲解 D'例题1:如图四棱柱ABCD-A'B'C'D'中以A为顶点的三条棱长都相等,且它们彼此

空间向量与立体几何练习题

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

【练习】:对空间任一点O和不共线的三点A,B,C,问满足向量式

????????????????OP?xOA?yOB?zOC (其中x?y?z?1)的四点P,A,B,C是否共面?

解:∵OP?(1?z?y)OA?yOB?zOC,

????????????????????????????????????????∴OP?OA?y(OB?OA)?z(OC?OA), ????????????∴AP?yAB?zAC,∴点P与点A,B,C共面.

例2.已知

O D ?ABCD,从平面AC外一点O引向量

A HE ?????????????????????????????????OE?kOA,OF?KOB,OG?kOC,OH?kOD,

(1)求证:四点E,F,G,H共面; (2)平面AC//平面EG.

C B G

F ????????????解:(1)∵四边形ABCD是平行四边形,∴AC?AB?AD,

????????????∵EG?OG?OE,

?????????????????????????????k?OC?k?OA?k(OC?OA)?kAC?k(AB?AD)????????????????????????????????? ?k(OB?OA?OD?OA

法向量在立体几何中的应用.

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

1 法向量在立体几何中的应用

查宝才

(扬州市新华中学,江苏 225002)

向量在数学和物理学中的应用很广泛,在解析几何与立体几何里的应用更为直接,用向量的方法特别便于研究空间里涉及直线和平面的各种问题。将向量引入中学数学后,既丰富了中学数学内容,拓宽了中学生的视野;也为我们解决数学问题带来了一套全新的思想方法——向量法。下面就向量中的一种特殊向量——法向量,结合近几年的高考题,谈谈其在立体几何有关问题中的应用。

1 法向量的定义

1.1 定义1 如果一个非零向量n 与平面α垂直,则称向量n 为平面α的法向量。

1.2 定义2 任意一个三元一次方程:0=+++D Cz By Ax ,222(C B A ++ )0≠都表示空间直角坐标系内的一个平面,其中),,(C B A n =为其一个法向量。]1[ 事实上,设点),,(0000z y x P 是平面α上的一个定点,),,(C B A n =是平面α的法向量,设点),,(z y x P 是平面α上任一点,则总有n P P ⊥0。

∴ 00=?n P P , 故 0),,(),,(000=---?z z y y x x C B A ,

即 0)()()(000=-+-+-z z C y

空间向量与立体几何练习题

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

【练习】:对空间任一点O和不共线的三点A,B,C,问满足向量式

????????????????OP?xOA?yOB?zOC (其中x?y?z?1)的四点P,A,B,C是否共面?

解:∵OP?(1?z?y)OA?yOB?zOC,

????????????????????????????????????????∴OP?OA?y(OB?OA)?z(OC?OA), ????????????∴AP?yAB?zAC,∴点P与点A,B,C共面.

例2.已知

O D ?ABCD,从平面AC外一点O引向量

A HE ?????????????????????????????????OE?kOA,OF?KOB,OG?kOC,OH?kOD,

(1)求证:四点E,F,G,H共面; (2)平面AC//平面EG.

C B G

F ????????????解:(1)∵四边形ABCD是平行四边形,∴AC?AB?AD,

????????????∵EG?OG?OE,

?????????????????????????????k?OC?k?OA?k(OC?OA)?kAC?k(AB?AD)????????????????????????????????? ?k(OB?OA?OD?OA

立体几何中的向量方法之方向向量与法向量

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

3.2立体几何中的向 量方法---------方向向量与法向量

一、方向向量与法向量 1.直线的方向向量如图, l 为经过已知点 A 且平行于非零向量 a 的直线,那么非零向量 a 叫做直线 l 的方向向量。

换句话说,直线上的非零向量叫做直线的 方向向量

A

l

a

P

直线的方向 向量不唯一

直线l的向量式方程

AP ta

练习 (, 1 2, 3 ),( B 2, 1, 2 ),(, P 1 1, 2 ) 2.已知两点 A , 点 Q 在 OP 上运动,求当 QA QB 取得最小值时,点 Q 的坐标.解:设 OQ OP ( ) ∴ QA QB 6 16 , ∴当 时, QA QB 取得最小值, 4 4 8 此时 Q( , , ) 3 3 3

2、平面的法向量

换句话说,与平面垂直的非零向量叫做平面 的法向量 平面 α的向量式方程 注:平面 α的法向量 不唯一 l

a AP 0

几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都互 相平行; 3.向量n 是平面的法向量,向 量m是与平面平行或在平面内, 则有

aAP

n m 0

巩固性训练11.设

a,

空间向量在立体几何中的应用

标签:文库时间:2024-10-04
【bwwdw.com - 博文网】

空间向量在立体几何中的应用

1【例1】已知三棱锥P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,

2M,S分别为PB,BC的中点.

(Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小. 证明:

设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图.

111则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0)

222??????1???11(Ⅰ)CM?(1,?1,),SN?(?,?,0),

222?????????11因为CM?SN????0?0,

22所以CM⊥SN

????1(Ⅱ)NC?(?,1,0),

2设a=(x,y,z)为平面CMN的一个法向量, 1?x?y?z?0,??2令x?2,得a=(2,1,-2). 则?1??x?y?0.??21????2?2 因为cosa,SN?223?2?1?所以SN与片面CMN所成角为45°

【例2】、如图,四棱锥S—ABCD中,SD?底面ABCD, AB//DC,AD?DC, AB?AD?1,DC=SD=2,E为棱 SB上的一点,平面EDC?平