含参一元一次不等式的解法
“含参一元一次不等式的解法”相关的资料有哪些?“含参一元一次不等式的解法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“含参一元一次不等式的解法”相关范文大全或资料大全,欢迎大家分享。
一元一次不等式解法反思
一元一次不等式的解法反思
王秀梅
在讲完不等式的性质后,我们根据学生情况安排4个课时学习解一元一次不等式,我们的设想是:第一课时:在简单理解不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,注意其中的区别与联系(即类比思想),学会用数轴直观的表示不等式的解集(数形结合思想);第二课时:熟练解一元一次不等式;第三课时和第四课时:一元一次不等式的应用。
由于本节课计算课,因此整个教学活动教师的讲解比较重要。在教学过程中不能急于求成,适时给予恰当的引导。再通过范例与学生共同经历解一元一次不等式的过程。
一元一次不等式的解法与一元一次方程的解法十分相似,解一元一次方程的依据是等式的性质,而解一元一次不等式的依据是不等式的性质,所以讲授新课之前先复习了不等式的性质和前面刚学过的一元一次不等式的定义。对于一元一次不等式解法的教学中采用探究式的教学方法,首先鼓励学生运用不等式的性质和不等式的解集自主尝试求解,再交流解答过程,并进行适当的归纳总结。类比解方程的方法,并比较其异同。让学生非常清楚地看到不等式的解法与方程的解法的步骤是相同的,只是第一步去分母和最后一步系数化为1,可能使得不等号的方向改变。
在教学过程中,由于通过简单的类
一元一次不等式与一元一次不等式组典型例题
一元一次不等式与一元一次不等式组的解法
知识点回顾
1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集
不等式的解:使不等式成立的未知数的值,叫做不等式的解.
不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.
不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)
(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a?b,那么
a?c__b?c
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果a?b,c?0,那么ac__bc(或
ab___) cc (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a?b,c?0那么ac__bc(或
ab___) cc说明:常见不等式所表示的基本语言与含义还有:
①若a-b>0,则a大于b ;②若a-b<0,则a小于b ;③若a
含参数的一元二次不等式的解法
很好的课件哦
含参数的一元二次不等式
很好的课件哦
复习引入 一元二次方程、 一元二次函数、一元二次方程、一元二次不等 式的相互关系及其解法: 式的相互关系及其解法: = b 2 4 ac二次函数
>0y0 x1
=0y
<0yx
y = ax2 +bx+c(a > 0)的图像 一元二次方程
x2 x
0x1 = x 2
0x无实根
ax +bx+c = 0(a > 0)2
b b2 4ac x1 = 2a b + b2 4ac x2 = 2a1 2
有两个相等实根
的根
b x1 = x2 = 2a
ax2 + bx+ c > 0(a > 0)的解集
{x x < x 或x > x } x x ∈ R且 x ≠ 2ba
x∈ Rφ
ax2 +bx+c < 0(a > 0)的解集
{x x < x < x }1 2
φ
很好的课件哦
复习引入
解一元二次不等式的一般步骤1:确定二次项系数的符号 : 2:判别△(能十字相乘法的不需判别) :判别△ 能十字相乘法的不需判别) 3:由1;2两个步骤画出不等式所对应函 : ; 两个步骤画出不等式所对应函 数的大致图
一元一次不等式组及其解法导学案
一元一次不等式组及其解法
教学目标:
1,了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,?x?3?x??1(2) ? ?x?7
??x?4掌握求一元一次不等式组的解集的常规方法。
2,经历知识的拓展过程,感受学习一元一次不等式组的必要性,逐步熟悉数形结合的思想方法,感受类比和化归的思想。
教学过程:
(一)情境感知
【问题1】
用每分钟可抽30 t水的抽水机来抽污水管道里积存的水,估计积存的污水超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?
【问题2】
某学校初一(3)班准备组织一次秋季外出活动,该班级共有学生40人.学校根据预算要求该班这次活动的总经费不能超过2 400元.旅游公司按成本计算这次活动总经费不能低于2 000元.如果考虑双方的要求,学生所付的经费应该在哪一范围之内?
(二)概念认识
一元一次不等式组概念:
把 ,就得到一个一元一次不等式组. (三)解法探究
在一元一次不等式组??30x?1200?30x?1500中的未知数x的取值范围应该是什么?
在同一数轴上表示这个不等式组的解集:
总结
一元一次不等式培优
一元一次不等式培优
例1、已知不等式3(1-x)<2(x+10) - 2 ① 与不等式
4x?a2(5x?12)< ② 36(1).如果不等式①的解集与不等式②的解集相同。求a的值。
(2)如果不等式①的解集都是不等式②的解,求a的值。
(3)如果不等式②的解集都是不等式①的解,求a的值。
?x?a?0例2、已知关于的不等式组?的整数解共有3个,则的取值范围是.
1?x?0?
例3、5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工
作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.
(1)设租用甲种汽车辆,请你设计所有可能的租车方案;
(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱
的租车方案.
练习 一、判断
1.若ac2>bc2,则a-3>b-3.( )
ab2.若2<2,则a<b( )
cc3.若a>b,则ac>bc( ) 4.若a>b,则ac2>bc2( )
一元一次不等式教案
一元一次不等式教案
第二章 一元一次不等式与一元一次不等式组
4.一元一次不等式(二)
一、学生知识状况分析
学生的知识技能基础:学生已经学习了一元一次不等式的概念和不等式的基本性质,知道解一元一次不等式的依据是不等式的三个基本性质,并且会解简单的一元一次不等式,而且能在数轴上表示其解集。
学生活动经验基础:在方程与方程组的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础,同时在以前的学习中学生已经有了很多合作的过程,具备了一定的合作交流能力。
二、教学任务分析
本节课的教学任务是用不等式解决简单的实际问题,难度不大,可以采用通过教师出示问题,学生自主学习、互相交流、解决问题的方式处理,从而提高课堂教学效率。根据实际问题中的不等关系列不等式,对部分学生来说还会有一定的困难,可以采用学生尝试解决、师生交流、总结方法、巩固运用等环节予以解决。因此本课时的目标为:
(一)教学目标:
(1)知识与技能目标: ①进一步熟练掌握解一元一次不等式的解法;
②利用一元一次不等式解决简单的实际问题。
(2)过程与方法目标:
通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解对实际问题的解决,训练学
一元一次不等式及不等式组培优
一元一次不等式及不等式组培优 一、一元一次不等式和函数
1.一次函数y=kx+b(k,b是常数,k?0)的图象如图所示,则不等式kx+b>0的解集是 ;
不等式kx+b<2的解集是 ; 当x<0时,y的取值范围是 ;
当x>-2时,y的取值范围是 .
2.直线l1:y?k1x?b与直线l2:y?k2x在同一平面直角坐标系中的图象如图所示,则关
y 于x的不等式k2x?k1x?b的解集为 .
3.一次函数y=5x-2m与与y=3x-6m+1交于第四象限,m的范围___________.
3 -1.5 o x
4.已知2x+y=5,当x满足条件 时,﹣1≤y<3.
5.如图,直线y=kx+b过A(﹣1,2),B(﹣2,0)两点,则0≤kx+b<4的解集为 .
6.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是 .
二、二元一次方程组和不等式 1.已知方程组
的解为负整数,求整数a的值.
2.已知方程组值.
3.已知方程组
(1)求m的取值范围; (2)化简:|
一元一次不等式复习
不等式复习
知识要点
(一) 一元一次不等式(组)的有关概念
1.不等式:用 表示不等关系的式子,叫做不等式。
2.不等式的解:能使不等式成立的 的值,叫做不等式的解. 3.不等式的解集:对于一个含有未知数的不等式,它的 , 叫做这个不等式的解集.
4.一元一次不等式:只含有 个未知数,并且未知数的最高次数是 的不等式,叫做一元一次不等式.
5.不等式组:几个含有相同未知数的 合起来,构成一个不等式组。
6.不等式组的解集:不等式组中各个不等式的解集的 ,叫做不等式组的解集. (二) 不等式的基本性质
性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号 的方向不变。
即:如果a>b,那么a±c>b±c.
性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变。
ab即:如果a>b,c>0,那么ac>bc(或 c?c). 性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变。
ab即:如果a>b,c<0,那么ac ). 1.解一元一次不等式与解一元一次方程的步骤基本相同: 去分母,去 , ,合并
一元一次不等式教案
一元一次不等式教案
第二章 一元一次不等式与一元一次不等式组
4.一元一次不等式(二)
一、学生知识状况分析
学生的知识技能基础:学生已经学习了一元一次不等式的概念和不等式的基本性质,知道解一元一次不等式的依据是不等式的三个基本性质,并且会解简单的一元一次不等式,而且能在数轴上表示其解集。
学生活动经验基础:在方程与方程组的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础,同时在以前的学习中学生已经有了很多合作的过程,具备了一定的合作交流能力。
二、教学任务分析
本节课的教学任务是用不等式解决简单的实际问题,难度不大,可以采用通过教师出示问题,学生自主学习、互相交流、解决问题的方式处理,从而提高课堂教学效率。根据实际问题中的不等关系列不等式,对部分学生来说还会有一定的困难,可以采用学生尝试解决、师生交流、总结方法、巩固运用等环节予以解决。因此本课时的目标为:
(一)教学目标:
(1)知识与技能目标: ①进一步熟练掌握解一元一次不等式的解法;
②利用一元一次不等式解决简单的实际问题。
(2)过程与方法目标:
通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解对实际问题的解决,训练学
含参数的一元二次不等式的解法(教案)
<<含参数的一元二次不等式的解法>>教案
高二年级 数学 何二敏
一. 教学目标:
1. 使学生掌握含参数的一元二次不等式的解法。 2. 使学生掌握数形结合、分类讨论、等价转换的数学思想方法。
3. 使学生掌握分类讨论的标准有三个:二次项系数、判别式、根的大小。
4. 与学生共同学习社会主义核心价值观的相关内容 (1) 建立有中国特色社会主意 的共同理想; (2) 弘扬民族精神和时代精神; (3) 树立社会主义荣辱观;
(4) 马克思主义指导思想是社会主义核心价值体
系的灵魂。
二. 教学重、难点:
1. 重点:使学生掌握含参数的一元二次不等式的解法。 2. 难点:数形结分类讨论、等价转换等数学思想的应用和理解,分类讨论的标准。 三. 课型: 习题课。
四.课时安排:两课时。
一、按x2项的系数a的符号分类,即a?0,a?0,a?0; 例1 解不等式:ax2??a?2?x?1?0
教师:解一元二次不等式时解集形式是什么?
学生:大于在两边,小于在中间。
教师:这个结论确定吗?请同学们画出图形进行观察。 学生:前提条件是二次项系数是正数。 教师:本题中二次项系数的正负确定吗? 学生:不确定,需要进行讨论。
教学:对。然后呢,