高考文科数学导数题型归纳

“高考文科数学导数题型归纳”相关的资料有哪些?“高考文科数学导数题型归纳”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高考文科数学导数题型归纳”相关范文大全或资料大全,欢迎大家分享。

高三导数压轴题题型归纳()

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

导数压轴题题型

1. 高考命题回顾

x

例1已知函数f(x)=e-ln(x+m).(2013全国新课标Ⅱ卷)

(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

11xx0

(1)解 f(x)=e-ln(x+m)?f′(x)=e-?f′(0)=e-=0?m=1,

x+m0+mx1ex+-1

定义域为{x|x>-1},f′(x)=ex-=,

x+mx+1

显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.

1xx(2)证明 g(x)=e-ln(x+2),则g′(x)=e-(x>-2).

x+2

11xxh(x)=g′(x)=e-(x>-2)?h′(x)=e+>0,

x+2x+2

所以h(x)是增函数,h(x)=0至多只有一个实数根,

1111

又g′(-)=-<0,g′(0)=1->0,

22e3

2

?1?

所以h(x)=g′(x)=0的唯一实根在区间?-,0?内,

?2?

?1?1t设g′(x)=0的根为t,则有g′(t)=e-=0?-

t+2?2?

1

所以,et=?t+2=e-t,

t+2

当x∈(-2,t)时,g′(x)g′(t)=0,g(x)单调递增;

1+t2t所以g(x)min=g(t)=e-ln(t+2)=+t=>

高三导数压轴题题型归纳

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

导数压轴题题型

1. 高考命题回顾

例1已知函数f(x)=ex-ln(x+m).(2013全国新课标Ⅱ卷)

(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

11

(1)解 f(x)=ex-ln(x+m)?f′(x)=ex-?f′(0)=e0-=0?m=1,

x+m0+m

ex?x+1?-11x

定义域为{x|x>-1},f′(x)=e-=,

x+mx+1

显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.

1

(2)证明 g(x)=ex-ln(x+2),则g′(x)=ex-(x>-2).

x+2

11

h(x)=g′(x)=ex-(x>-2)?h′(x)=ex+>0,

x+2?x+2?2所以h(x)是增函数,h(x)=0至多只有一个实数根,

1111

又g′(-)=-<0,g′(0)=1->0,

22e3

2

1

-,0?内, 所以h(x)=g′(x)=0的唯一实根在区间??2?

11

1-

所以,et=?t+2=et,

t+2

当x∈(-2,t)时,g′(x)g′(t)=0,g(x)单调递增;

?1+t?21t

所以g(x)min=g(t)=e-ln(t+2)=+t=>0,

t+2t+2

当m≤2时,有ln(x+m)≤ln(x

高三导数压轴题题型归纳()

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

导数压轴题题型

1. 高考命题回顾

x

例1已知函数f(x)=e-ln(x+m).(2013全国新课标Ⅱ卷)

(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

11xx0

(1)解 f(x)=e-ln(x+m)?f′(x)=e-?f′(0)=e-=0?m=1,

x+m0+mx1ex+-1

定义域为{x|x>-1},f′(x)=ex-=,

x+mx+1

显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.

1xx(2)证明 g(x)=e-ln(x+2),则g′(x)=e-(x>-2).

x+2

11xxh(x)=g′(x)=e-(x>-2)?h′(x)=e+>0,

x+2x+2

所以h(x)是增函数,h(x)=0至多只有一个实数根,

1111

又g′(-)=-<0,g′(0)=1->0,

22e3

2

?1?

所以h(x)=g′(x)=0的唯一实根在区间?-,0?内,

?2?

?1?1t设g′(x)=0的根为t,则有g′(t)=e-=0?-

t+2?2?

1

所以,et=?t+2=e-t,

t+2

当x∈(-2,t)时,g′(x)g′(t)=0,g(x)单调递增;

1+t2t所以g(x)min=g(t)=e-ln(t+2)=+t=>

福建省高考文科数学第二轮:函数与导数题型小结

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

福建省高考文科数学第二轮:函数与导数题型小结

福建省高考文科数学第二轮:函数与导数题型小结

1.高考考点 (1)导数概念及其几何意义. ① 了解导数概念的实际背景; ② 理解导数的几何意义. (2)导数的运算.

①能根据导数定义求函数y = C,y = x,y = x 2, 1 y = 的导数; x②能利用基本初等函数的导数公式和导数的四则 运算法则求简单函数的导数; ③常见基本初等函数的导数公式; ④常用导数运算法则

福建省高考文科数学第二轮:函数与导数题型小结

(3)导数在研究函数中的应用. ①了解函数单调性和导数的关系;能利用导 数研究函数的单调性,会求函数的单调区间(其中 多项式函数不超过三次); ②了解函数在某点取得极值的必要条件和充分 条件;会用导数求函数的极大值、极小值(其中多 项式函数不超过三次);会求闭区间上函数的最大 值、最小值(其中多项式函数不超过三次). 2.易错易漏 ①对导数概念以及导数概念的某些实际背景 (如瞬时速度,加速度,光滑曲线的切线的斜率)未 能认真理解;

福建省高考文科数学第二轮:函数与导数题型小结

②求函数极值时,导数值为0的点是该点为极值点 的必要条件,但不是充分条件; ③求曲线在某一点处的切线与过某一点的切线的

高考导数常见题型汇总

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

1已知函数f(x) ax3 bx2 (c 3a 2b)x d的图象如图所示.

(I)求c,d的值;

(II)若函数f(x)在x 2处的切线方程为3x y 11 0,求函数f(x)的解析式;

(III)在(II)的条件下,函数y

f(x)与y

1

f (x) 5x m3

的图象有三个不同的交点,求m的取值范围.

2.已知函数f(x) alnx ax 3(a R).

(I)求函数f(x)的单调区间;

(II)函数f(x)的图象的在x 4处切线的斜率为

g(x)

13m

x x2[f'(x) ]在区间(1,3)上不是单调函数,求32

3

,若函数2

m的取值范围.

3.已知函数f(x) x3 ax2 bx c的图象经过坐标原点,且在x 1处取得极大值.

(I)求实数a的取值范围;

(2a 3)2

(II)若方程f(x) 恰好有两个不同的根,求f(x)的解析式;

9

(III)对于(II)中的函数f(x),对任意 、 R,求证: |f(2sin ) f(2sin )| 81.

4.已知常数a 0,e为自然对数的底数,函数f(x) ex x,g(x) x2 alnx.

(I)写出f(x)的单调递增区间,并证明ea a; (II)讨论函数y g(x)在区间(1,ea)上零点的个数.

5.已知函

高三导数压轴题题型归纳2

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第一章 导数及其应用

一, 导数的概念

lim1..已知f(x)?,则?x?0

f(2??x)?f(2)的值是( )

?x11A. ? B. 2 C. D. -2

44h?01x变式1:设f??3??4,则lim

A.-1

f?3?h??f?3?为( )

2hB.-2 C.-3

f?x0??x??f?x0?3?x?变式2:设f?x?在x0可导,则lim等于 ?x?0?x A.2f??x0?

B.f??x0?

C.3f??x0?

D.1

D.4f??x0?

( )

导数各种题型方法总结

请同学们高度重视:

首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法

5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在

其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立;

1、此类

高考文科数学专题复习导数训练题- 副本

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高考文科数学专题复习导数训练题(文)

一、考点回顾

1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义.

2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 二、经典例题剖析 考点一:求导公式 例1f/(x)是f(x)?13x?2x?1的导函数,则f/(?1)? . 31x?2,则f(1)?f/(1)? . 2考点二:导数的几何意义

例2. 已知函数y?f(x)的图象在点M(1,f(1))处的切线方程是y?考点三:导数的几何意义的应用

例3.已知曲线C:y?x3?3x2?2x,直线l:y?kx,且直线l与曲线C相切于点?x0,y0??x0?0?,求直线

2014高考文科数学:导数知识点总结

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

2014高考文科数学:导数知识点总结

(4) (cosx) sinx. (5) (lnx)

;(logax) logae. (6) (ex) ex; xx

(ax) axlna.(7)(u v)' u' v'. (8)(uv)' u'v uv'. (9)

u'u'v uv'

() (v 0). 2vv

1 1(10) 2 (11)

x x

'

x 21x

'

5.导数的应用

①单调性:如果f'(x) 0,则f(x)为增函数;如果f'(x) 0,则f(x)为减函数 ②求极值的方法:当函数f(x)在点x0处连续时, (注f'(x0) 0)

如果在x0附近的左侧f (x) 0,右侧f (x) 0,则f(x0)是极大值;(“左增右减↗↘”)

如果在x0附近的左侧f (x) 0,右侧f (x) 0,则f(x0)是极小值.(“左减右增↘↗”) 附:求极值步骤

f(x)定义域→f'(x)→f'(x)零点→列表: x范围、f'(x)符号、f(x)增减、

f(x)极值

③求 a,b 上的最值:f(x)在 a,b 内极值与f(a)、f(b)比较

6. 三次函数 f(x) ax3 bx2 cx d

高考数学题型归纳完整版

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第一章 集合与常用逻辑用语 第一节 集合

题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算

第二节 命题及其关系、充分条件与必要条件

题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充

要条件的判断与证明

题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节 简单的逻辑联结词、全称量词与存在量词

题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定

题型1-9 结合命题真假求参数的取值范围

第二章 函数

第一节 映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节 函数的定义域与值域(最值)题型2-4 函数定义域的求解 题型2-5 函数定义域的应用

题型2-6 函数值域的求解 第三节 函数的性质——奇偶性、单调性、周期性

题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判断

题型2-9 函数周期性的判断

题型2-10 函数性质的综合应用 第四节 二次函数

题型2-11 二次函数、一元二次方程、二次不等式的关系

题型2-12 二次方程的实根分布及

条件

题型2-13 二次函数“动轴定区间”

“定轴动区间”问题 第五节 指数与指数函数

题型2-1

原创高三导数压轴题题型归纳 - 图文

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

导数压轴题题型归纳

1. 高考命题回顾

例1已知函数f(x)=ex-ln(x+m).(2013全国新课标Ⅱ卷)

(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例2已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且

在点P处有相同的切线y=4x+2(2013全国新课标Ⅰ卷) (Ⅰ)求a,b,c,d的值

(Ⅱ)若x≥-2时, f(x)?kg(x),求k的取值范围。 例3已知函数f(x)满足f(x)?f'(1)ex?12. 在解题中常用的有关结论※

(1)曲线y?f(x)在x?x0处的切线的斜率等于f?(x0),且切线方程为y?f?(x0)(x?x0)?f(x0)。 f?(x0)?0。反之,不成立。 (2)若可导函数y?f(x)在 x?x0 处取得极值,则(3)对于可导函数f(x),不等式f?(x)?0??0?的解集决定函数f(x)的递增(减)区间。 ?0(?0)恒成立(f?(x) 不恒为(4)函数f(x)在区间I上递增(减)的充要条件是:?x?If?(x)0). (5)函数f(x)(非常量函数)在区间I上不单调等价于f(x