高中平面向量经典例题

“高中平面向量经典例题”相关的资料有哪些?“高中平面向量经典例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中平面向量经典例题”相关范文大全或资料大全,欢迎大家分享。

平面向量及应用经典例题

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

专题9 平面向量及应用

★★★自我提升

????1.如图1所示,D是?ABC的边AB上的中点,则向量CD?( )

??2.已知向量a?(3,1),b是不平行于x轴的单位向量,且a?b?3,则b?()

3113133) C.(,) D.(1,0) ,) B.(,222244??3. ?ABC的三内角A,B,C所对边的长分别为a,b,c设向量p?(a?c,b),

????q?(b?a,c?a),若p//q,则角C的大小为( ) ???2?A. B. C. D. 6323???????24.已知|a|?2|b?|0,且关于x的方程x?|a|x?a?b?0有实根,则a与b的夹角的取值范围是

A.(( )

????1????????1????????1????????1????A.?BC?BA B. ?BC?BA C. BC?BA D. BC?BA

222???2???2??] D.[,?] ] B.[,?] C.[,63336115.若三点A(2,2),B(a,0),C(0,b)(ab?0)共线,则?的值等于___

平面向量典型例题

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

平面向量经典例题:

1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于()

A.-2B.-1

3

C.-1 D.-2

3

[答案] C

[解析]λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1.

2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=()

A.-1 B.- 3

C.-3 D.1

[答案] C

[解析]a+2b=(3,1)+(0,2)=(3,3),

∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3.

(理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为()

A.-6

11B.-

11

6

C.6

11 D.

11

6

[答案] C

[解析]a+b=(4,1),a-λb=(1-3λ,2+λ),∵a+b与a-λb垂直,

∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11.

3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为()

A.150°B.120&#

平面向量作业

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

大毛毛虫★倾情搜集★精品资料

向量

1、在△ABC中,AB=AC,D、E分别是AB、AC的中点,则( )

???????1??????????????????????????A、AB与AC共线 B、DE与CB共线C、ADsin?与AE相等 D、AD与BD相等

2、下列命题正确的是( )

????????A、向量AB与BA是两平行向量

????aaB、若、b都是单位向量,则=b

????????C、若AB=DC,则A、B、C、D四点构成平行四边形

D、两向量相等的充要条件是它们的始点、终点相同 3、在下列结论中,正确的结论为( )

????????????(1)a∥b且|a|=|b|是a=b的必要不充分条件;(2)a∥b且|a|=|b|是a=b的既不充分也不必要条件;????????????(3)a与b方向相同且|a|=|b|是a=b的充要条件;(4)a与b方向相反或|a|≠|b|是a≠b的充分不必要条

件A、(1)(3) B、(2)(4) C、(3)(4) D、(1)(3)(4)

4、把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向

22.7平面向量

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第四节

平面向量及其加减法

22.7 平面向量上海市民办文绮中学 杨卓远

试一试:

在上新课之前,

谈谈你对向量的了解! 越多越好哟!

课题引入如图,从点A向东走5米到达点B,与从点A向

北走5米到达点C,两者有什么区别?再看从点A向东走5米到达点B,与从点A向西 走5米到达点D,两者又有什么区别?C

5米 5米D

5米AB

向量的定义由以上的讨论可以看出,世界上确实存在着“既有大小、又有方向的量” . 表明我们有必 要对这种量进行学习和研究.

既有大小、又有方向的量叫做向量(vector) .C

5米 5米D

5米AB

向量的表示方法 图中向量可表示为:有向线段 AB ,其中 A为始点,B为终点.B

AB的大小,称为向量的模,记作 AB ;

始点 A和终点 B间的距离表示向量

A

自始点 A指向终点 B的方向表示向量的方向.

比较:线段 AB与线段 BA一样吗?向量 AB 与向量 BA一样吗?

向量的表示方法向量还可以用小写的粗体英文字母表示,如 a、b、c、…;手写时,在字母上方加箭头,

如 a 、b 、c 、…(见下图),它们的模分别 b c 记作 a 、 、 、… .

a

b

c

练习:如图,

高中数学经典解题技巧和方法:平面向量

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

世纪金榜 圆您梦想 www.jb1000.com

高中数学经典解题技巧:平面向量

【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无 论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网 数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望 能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了, 下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题, 同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:

1. 平面向量的实际背景及基本概念 (1) 了解向量的实际背景。

(2) 理解平面向量的概念,理解两个向量相等的含义。 (3) 理解向量的几何意义。 2. 向量的线性运算

(1) 掌握向量加法、减法的运算,并理解其几何意义。

(2) 掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3) 了解向量线性运算的性质及其几何意义。 3. 平面向量的基本定理及坐

从平面向量到空间向量

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

从平面向量到空间向量学案

第一节 :从平面向量到空间向量

设计人:陈维江 审核人:席静

上课时间: 班级: 姓名:

学习目标:1、理解空间向量的概念;

2、掌握空间向量的几何表示法和字母表示法;

3、掌握两个空间向量的夹角、空间向量的方向向量和平面的法向量的概念。

学习重点:理解两个向量的夹角、直线的方向向量、平面的法向量等概念 学习难点:理解共面向量的概念

新课学习:

看课本25-26页回答下列问题:

从平面向量到空间向量学案

做27页练习 总结:本节概念较多,多看课本,理解概念是关键。 课后作业:

配套K12高中数学第二章平面向量2.4平面向量的数量积2.4.2平面向

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

最新K12教育

2.4.2 平面向量数量积的坐标表示、模、夹角

课堂导学

三点剖析

1.两个向量数量积的坐标表示

【例1】 已知向量a=(4,3),b=(-1,2). (1)求a与b的夹角θ的余弦值;

(2)若向量a-λb与2a+b垂直,求λ的值. 解:(1)a·b=4×(-1)+3×2=2,

又∵|a|=32?42=5,|b|=12?22?5, ∴cosθ=

a?b225. ??|a||b|5525(2)a-λb=(4+λ,3-2λ),2a+b=(7,8).

∵(a-λb)⊥(2a+b), ∴(a-λb)·(2a+b)=0. ∴7×(4+λ)+8(3-2λ)=0. ∴λ=

52. 9温馨提示

运用数量积解决有关角度、长度、垂直问题的关键是正确地使用运算公式. 2.数量积坐标表示的应用

【例2】已知a、b是两个非零向量,同时满足|a|=|b|=|a-b|,求a与a+b的夹角.

a?(a?b)|a|2?a?b思路分析:根据向量夹角公式得:cosθ=,须根据已知条件找到?|a||a?b||a||a?b|a·b与a的关系.|a+b|与|a|的关系即可解决. 解法1:

22

根据|a|=|b|,有|a|=|b|.

222

又由|b|=|a-b|,得

平面向量数量积

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

平面向量数量积的 物理背景及其含义

教学目标:掌握平面向量数量积的概念, 掌握平面向量数量积的概念,能用它来 表示向量的模及向量的夹角

教学重点:平面向量数量积的运算律, 平面向量数量积的运算律,用它来表示向量的模及向量的夹角

教学难点:平面向量数量积的定义及运算律的理解, 平面向量数量积的定义及运算律的理解,平面向量数量积的应用

如图所示:物体在力F的作用下由A移动到B 问力F 如图所示:物体在力F的作用下由A移动到B,问力F 所作的功? 所作的功? F θ S A B F

力对物体所做的功,等于力的大小、位移的大小、 力与位移夹角的余弦这三者的乘积。

W= F S cosθ

已知两个非零向量a与b,我们把数量|a||b|cos θ叫做 a b a b a与b的数量积,记作a ·b ,即 b a b a ·b= |a||b|cos θ b a b 其中θ是a与b的夹角, |a|cos θ( |b|cos θ )叫 a b a b 做向量a在b方向上( b 在 a方向上 )的投影。 a b ( A a O A1 b 几何意义:数量积a ·b等于a的长度|a|与b在a的方向上的 a b a a b a 投影|b|cos θ的乘积

平面向量基本练习

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

一、选择题 1.若向量a=(3,2),b=(0,-1),则向量2b-a的坐标是( )

A.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)

2.设坐标原点为O,抛物线y2=2x与过焦点的直线交于A、B两点,则OA?OB等于( )

A.

3 4 B.-

3 4 C.3 D.-3

3.若向量a=(1,1),b=(1,-1),c=(-1,2),则c等于( ) A.-

331311a+b B.a-b C. a-b 222222D.-

31a+b 224.设a、b、c是任意的非零平面向量,且相互不共线,则

①(a·b)c-(c·a)b=0 ②|a|-|b|<|a-b| ③(b·c)a-(c·a)b不与c垂直 ④(3a+2b)(3a-2b)=9|a|2-4|b|2中,是真命题的有( ) A.①② B.②③ C.③④ D.②④ 5.已知向量a和b的夹角为120°,且|a|=2,|b|=5,则(2a-b)·a=_____.

10.若非零向量α、β满足|α+β|=|α-β|,则α与β所成角的大小为_____.

11.已知向量OA=(-1,2),OB=(3,m),若OA⊥AB,则m= . 6.设a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则m=_____. 7.已知a+b=2i-8j,a-b=-8i+16j,那么a·b=_____.

8、已知ABA.2

9、若平面向量与向量

A.

平面向量专题复习

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

专题复习:平面向量

一、本章知识结构:

二、重点知识回顾

1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.

??a2.向量的表示方法:①用有向线段表示;②用字母、b等表示;③平面向量的坐标表示:分

???yjaix别取与轴、轴方向相同的两个单位向量、作为基底。任作一个向量,由平面向量基

????xiy?yj,(x,y)叫做向量a的(直角)坐标,本定理知,有且只有一对实数x、,使得a?yya记作?(x,y),其中x叫做a在x轴上的坐标,叫做a在轴上的坐标, 特别地,

????22ai?(1,0),j?(0,1),0?(0,0)。?x?y;若A(x1,y1),B(x2,y2),则

AB??x2?x1,y2?y1?,

AB?(x2?x1)2?(y2?y1)2 3.零向量、单位向量:①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,

a叫单位向量.(注:|a|就是单位向量)

??a04.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定与任一向量平行.向量、?????b、c平行,记作a∥b∥c.共线向量与平行向量关系:平行向量就是共线向量.

5.相等向量:长度相等且方向相同的向量叫相等向量.

6.向量的加法、减法:

①求