幂函数的图像和性质
“幂函数的图像和性质”相关的资料有哪些?“幂函数的图像和性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“幂函数的图像和性质”相关范文大全或资料大全,欢迎大家分享。
幂函数概念和性质
§2.3幂函数 幂函数
学习目标1、通过实例,了解幂函数的概念. 2、通过具体实例研究幂函数的图 象和性质. 3、掌握幂函数的简单应用.
问题引入
我们先看几个具体问题:
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她需 要支付p=w元,这里p是w的函数; y = x 2 (2) 如果正方形的边长为a,那么正方形的面积 S = a , 2 这里S是a的函数; y=x 3 (3) 如果立方体的边长为a,那么立方体的体积 V = a , 3 y=x 这里V是a函数; (4)如果一个正方形场地的面积为S,那么这个正方形的 1 1 边长 a= 2 , 这里a是 S的函数; y = x 2 s (5)如果人ts内骑车行进了1km,那么他骑车的平均速度 1 1 y=x v = km/ s, 这里v是t的函数.
t
若将它们的自变量全部用x来表示 函数值用 若将它们的自变量全部用 来表示,函数值用 来表 来表示 函数值用y来表 α 则它们的函数关系式将是: 示,则它们的函数关系式将是 则它们的函数关系式将是 y=
x
定义α是 数 常 .一 地函 y = x 叫 幂 数其 x 自 量 般 , 数 做 函 , 中是 变 ,α
几点说明: 几点说明1 = x
指数函数、对数函数、幂函数的图像与性质
1 指数函数、对数函数、幂函数的图像与性质
(一)指数与指数函数
1.根式
(1)根式的概念
(2).两个重要公式
①??
??????<-≥==)0()0(||a a a a a a a n n ;
②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂
(1)幂的有关概念
①正数的正分数指数幂:0,,1)m
n a a m n N n *=>∈>、且;
②正数的负分数指数幂: 1
0,,1)m
n m
n a a m n N n a -*==>∈>、且
③0的正分数指数幂等于0,0的负分数指数幂没有意义.
注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质
①a r a s =a r+s (a>0,r 、s ∈Q );
②(a r )s =a rs (a>0,r 、s ∈Q );
③(ab)r =a r b s (a>0,b>0,r ∈Q );.
3.指数函数的图象与性质
n 为奇数 n 为偶数
2
注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之
幂函数的性质,函数综合
教学过程: 一、幂函数
1.幂函数的定义
⑴一般地,形如y x (x R)的函数称为幂函数,其中x是自变量, 是常数; ⑵y x,y x,y x等都是幂函数,在中学里我们只研究 为有理数的情形; ⑶幂函数与一、二次函数,正、反比例函数及指、对数函数一样,都是基本初等函数. 2.幂函数的图像
2
13
14
x
12
x 1
⑵归纳幂函数的性质: ① 当 0时:
ⅰ)图象都过 0,0 , 1,1 点。
ⅱ)在第一象限内图象逐渐上升,都是增函数,且 越大,上升速度越快。 ⅲ)当 1时,图象下凸;当0 1时,图象上凸。
② 当 0时: ⅰ)图象都过 1,1 点。
ⅱ)在第一象限内图象逐渐下降,都是减函数,且 越小,下降速度越快。 思考1:如何判断一个幂函数在其他象限内是否有图象? 思考2:如何作出一个幂函数在其他象限内是否有图象? 例题讲解:
[键入文字] [键入文字]
14
[键入文字]
例1 写出下列函数的定义域和奇偶性
(1)y x (2)y x (3)y x 3 (4)y x 2
例2 比较下列各组中两个值的大小: (1)2,3 ;(2)3.14与
1
6
164
34
34
;(3)( 0.88)与( 0.89).
34
34
23
34
32
38
5353
5.2正弦函数余弦函数的图像和性质
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质
潘老师课件
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质(一 正弦函数余弦函数的图象和性质 一)
复习回顾 思考导学 学习新课 课时小结0
y
x
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.
sin a, cosa, tan a 的几何意义是什么?yT
1
PA
正弦线MP
o
M
1
x
余弦线OM
正切线AT
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
y = x2 2x的图象 2.如何用描点法作出函数 如何用描点法作出函数 图象? 如何用(1)列表 列表
1 0 1 2 y = x 2 2x 3 0 1 0
x
3 31 2 1 0
y
(2) 描点
.
1
(3)连线 连线
.
2
.
x返回
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.能否用描点法作函数 y =sin x, x∈[0 2 ]的图象 能否用描点法作函数 能否用 , π 图象?只要能够确定该图象上的点 (x,sin
正弦函数余弦函数的图像和性质(2)
第二课时 正弦函数、余弦函数的图象与性质(二)
(一)复习与引入 上节课,我们学习了两种作正余弦函数的图象的方法,其中我们经常要用到的是五点法作图。(一图了事)
教师在黑板上用五点法画出函数y=sinx,y=cosx的图象(列表、描点、连线),同时说明五个关键点的坐标。强调作正余弦函数要抓住五个关键点。 (二)新课
一、正余弦函数作图 例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π]; 说明:
1、第(1)题由教师演示(列表,描点,作图),第(2)题由学生自行完成,教师校对; 2、作正弦、余弦函数的图象必须抓住五个关键点;
3、第(1)题中的函数与函数y=sinx,x∈[0,2π]的图象之间有何关系?(由函数y=sinx,x∈[0,2π]上的每一点向上平移一个单位长度或图象向上平移一个单位长度)第(2)题中的函数与函数y=cosx,x∈[0,2π]的图象之间有何关系?(关于x轴对称)
4、口答:请根据函数y=sinx,y=cosx的图象,画出函数y=sinx-1,y=1-cosx的图象。 5、推广并归纳:y=sinx+m,y=cosx+n可由y=sinx,y=cosx经过怎样的变换而得到?(在y轴上平行移动)若在自变量
5.2正弦函数余弦函数的图像和性质
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质
潘老师课件
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质(一 正弦函数余弦函数的图象和性质 一)
复习回顾 思考导学 学习新课 课时小结0
y
x
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.
sin a, cosa, tan a 的几何意义是什么?yT
1
PA
正弦线MP
o
M
1
x
余弦线OM
正切线AT
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
y = x2 2x的图象 2.如何用描点法作出函数 如何用描点法作出函数 图象? 如何用(1)列表 列表
1 0 1 2 y = x 2 2x 3 0 1 0
x
3 31 2 1 0
y
(2) 描点
.
1
(3)连线 连线
.
2
.
x返回
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.能否用描点法作函数 y =sin x, x∈[0 2 ]的图象 能否用描点法作函数 能否用 , π 图象?只要能够确定该图象上的点 (x,sin
3.6正弦函数、余弦函数的图像和性质
3.6正弦函数、余弦函数的图像和性质
教学目标:
1.会用单位圆中的三角函数线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像;
2.简化正弦、余弦函数的绘制过程,会用“五点法”画出正弦函数、余弦函数的简图;
3.了解周期函数与最小正周期的意义,会求y=Asin(ωx+ψ)的周期;
4.通过正弦、余弦函数图像理解正弦函数、余弦函数的性质,培养学生的数形结合的能力。
教学重点:正弦函数、余弦函数的图象形状及其主要性质(包括定义域、值域、周期性、奇偶性、单调性)
教学难点:1.利用正弦线画出函数y=sinx,x∈[0,2π]的图象; 2.利用正弦曲线和诱导公式画出余弦曲线; 3.周期函数与(最小正)周期的意义。 教学过程:
一、复习引入:
1.引进弧度制以后,y=sinx和y=cosx都可以看做是定义域为(-∞,+∞)的实变量函数。作为函数,我们首先要关注其图像特征。本节课我们一起来学习作正、余弦函数图像的方法。
2.复习正弦线、余弦线的概念
前面我们已经学习过三角函数线的概念及作法,请同学们回忆一下什么叫正弦线?什么叫余弦线?
设任意角α的终边与单位圆相交于点P(x,y),过点P作x轴的垂
1.3.2余弦函数、正切函数的图像和性质
(人教版)余弦函数、正切函数的图像和性质
普通高中课程标准实验教科书—数学第四册[人教版B]
第一章 基本初等函数(II)
1.3.3余弦函数、正切函数的图像和性质
教学目标:
1、理解并掌握作余弦函数和正切函数图象的方法.
2、理解并掌握余弦函数、正切函数
教学重点:掌握余弦函数和正切函数图象作法和性质
教学过程
一、复习引入:
正弦函数的图像和性质
二、讲解新课:
1、用单位圆中的余弦线作余弦函数的图象(几何法):
为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.
2、余弦函数y=cosx x [0,2 ]的五个点关键是 (0,1) (
2,0) ( ,-1) (3 2,0) (2 ,1)
现在把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=cosx,x∈R的图象,
(人教版)余弦函数、正切函数的图像和性质
3、正切函数y tanx的图象:
我们可选择
2, 2
根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数y tanxx R,且x
2 k k z 的图象,称“正切曲
正弦函数余弦函数的图像和性质(2)
第二课时 正弦函数、余弦函数的图象与性质(二)
(一)复习与引入 上节课,我们学习了两种作正余弦函数的图象的方法,其中我们经常要用到的是五点法作图。(一图了事)
教师在黑板上用五点法画出函数y=sinx,y=cosx的图象(列表、描点、连线),同时说明五个关键点的坐标。强调作正余弦函数要抓住五个关键点。 (二)新课
一、正余弦函数作图 例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π]; 说明:
1、第(1)题由教师演示(列表,描点,作图),第(2)题由学生自行完成,教师校对; 2、作正弦、余弦函数的图象必须抓住五个关键点;
3、第(1)题中的函数与函数y=sinx,x∈[0,2π]的图象之间有何关系?(由函数y=sinx,x∈[0,2π]上的每一点向上平移一个单位长度或图象向上平移一个单位长度)第(2)题中的函数与函数y=cosx,x∈[0,2π]的图象之间有何关系?(关于x轴对称)
4、口答:请根据函数y=sinx,y=cosx的图象,画出函数y=sinx-1,y=1-cosx的图象。 5、推广并归纳:y=sinx+m,y=cosx+n可由y=sinx,y=cosx经过怎样的变换而得到?(在y轴上平行移动)若在自变量
正弦函数余弦函数的图像和性质(2)
第二课时 正弦函数、余弦函数的图象与性质(二)
(一)复习与引入 上节课,我们学习了两种作正余弦函数的图象的方法,其中我们经常要用到的是五点法作图。(一图了事)
教师在黑板上用五点法画出函数y=sinx,y=cosx的图象(列表、描点、连线),同时说明五个关键点的坐标。强调作正余弦函数要抓住五个关键点。 (二)新课
一、正余弦函数作图 例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π]; 说明:
1、第(1)题由教师演示(列表,描点,作图),第(2)题由学生自行完成,教师校对; 2、作正弦、余弦函数的图象必须抓住五个关键点;
3、第(1)题中的函数与函数y=sinx,x∈[0,2π]的图象之间有何关系?(由函数y=sinx,x∈[0,2π]上的每一点向上平移一个单位长度或图象向上平移一个单位长度)第(2)题中的函数与函数y=cosx,x∈[0,2π]的图象之间有何关系?(关于x轴对称)
4、口答:请根据函数y=sinx,y=cosx的图象,画出函数y=sinx-1,y=1-cosx的图象。 5、推广并归纳:y=sinx+m,y=cosx+n可由y=sinx,y=cosx经过怎样的变换而得到?(在y轴上平行移动)若在自变量