层次分析法例题详解
“层次分析法例题详解”相关的资料有哪些?“层次分析法例题详解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“层次分析法例题详解”相关范文大全或资料大全,欢迎大家分享。
层次分析法例题
专题:层次分析法
一般情况下,物流系统的评价属于多目标、多判据的系统综合评价。如果仅仅依靠评价者的定性分析和逻辑判断,缺乏定量分析依据来评价系统方案的优劣,显然是十分困难的。尤其是物流系统的社会经济评价很难作出精确的定量分析。
层次分析法(Analytical Hierarchy Process)由美国著名运筹学家萨蒂(T.L.Saaty)于1982年提出,它综合了人们主观判断,是一种简明、实用的定性分析与定量分析相结合的系统分析与评价的方法。目前,该方法在国内已得到广泛的推广应用,广泛应用于能源问题分析、科技成果评比、地区经济发展方案比较,尤其是投入产出分析、资源分配、方案选择及评比等方面。它既是一种系统分析的好方法,也是一种新的、简洁的、实用的决策方法。
◆ 层次分析法的基本原理
人们在日常生活中经常要从一堆同样大小的物品中挑选出最重的物品。这时,一般是利用两两比较的方法来达到目的。假设有n个物品,其真实重量用w1,w2,…wn表示。要想知道w1,w2,…wn的值,最简单的就是用秤称出它们的重量,但如果没有秤,可以将几个物品两两比较,得到它们的重量比矩阵A。
如果用物品重量向量W=[w1,w2,…wn]右乘矩阵A,则有:
T
由上式可知,n是A的特征值
层次分析法例题
实验目的:
熟悉有关层次分析法模型的建立与计算,熟悉Matlab的相关命令。
实验准备:
1. 在开始本实验之前,请回顾教科书的相关内容;
2. 需要一台准备安装Windows XP Professional操作系统和装有Matlab的计算机。
实验内容及要求
试用层次分析法解决一个实际问题。问题可参考教材P296第4大题。
实验过程:
某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。以A表示系统的总目标,判断层中B1表示功能,B2表示价格,B3表示可维护性。C1,C2,C3表示备选的3种品牌的设备。
购买设备A 目标层: 判断层: 功能B1 价格B2 维护性B3 方案层: 产品C1 产品C2 设备采购层次结构图
产品C3
解题步骤:
1、标度及描述
人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。
为了便于将比较判断定量化,引入1~9比率标度方法,规定用
层次分析法例题
专题:层次分析法
一般情况下,物流系统的评价属于多目标、多判据的系统综合评价。如果仅仅依靠评价者的定性分析和逻辑判断,缺乏定量分析依据来评价系统方案的优劣,显然是十分困难的。尤其是物流系统的社会经济评价很难作出精确的定量分析。
层次分析法(Analytical Hierarchy Process)由美国著名运筹学家萨蒂(T.L.Saaty)于1982年提出,它综合了人们主观判断,是一种简明、实用的定性分析与定量分析相结合的系统分析与评价的方法。目前,该方法在国内已得到广泛的推广应用,广泛应用于能源问题分析、科技成果评比、地区经济发展方案比较,尤其是投入产出分析、资源分配、方案选择及评比等方面。它既是一种系统分析的好方法,也是一种新的、简洁的、实用的决策方法。
◆ 层次分析法的基本原理
人们在日常生活中经常要从一堆同样大小的物品中挑选出最重的物品。这时,一般是利用两两比较的方法来达到目的。假设有n个物品,其真实重量用w1,w2,…wn表示。要想知道w1,w2,…wn的值,最简单的就是用秤称出它们的重量,但如果没有秤,可以将几个物品两两比较,得到它们的重量比矩阵A。
如果用物品重量向量W=[w1,w2,…wn]右乘矩阵A,则有:
T
由上式
竖向荷载计算--分层法例题详解
例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的线刚度值(i?EI)。 l
图1
解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。
图2 二层计算简图
图3 底层计算简图
2、计算修正后的梁、柱线刚度与弯矩传递系数
采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。底层柱的弯矩传递系数为矩传递系数,均为
11,其余各层柱的弯矩传递系数为。各层梁的弯231。 2
图4 修正后的梁柱线刚度
图5 各梁柱弯矩传递系数
3、计算各节点处的力矩分配系数
计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:
G节点处:?GH?iGH?iG?GjiGH7.63??0.668
iGH?iGD7.63?3.79iGD3.79??0.332
iGH?iGD7.63?3.79iHG7.63??0.353
iHG?iHE?iHI7.63?3.79?10.21iHI3.79??0.175
iHG?iHE?iHI7.63?3.79?10.21iHE10.21??0.
竖向荷载计算--分层法例题详解
例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的线刚度值(i?EI)。 l
图1
解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。
图2 二层计算简图
图3 底层计算简图
2、计算修正后的梁、柱线刚度与弯矩传递系数
采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。底层柱的弯矩传递系数为矩传递系数,均为
1。 211,其余各层柱的弯矩传递系数为。各层梁的弯23
图4 修正后的梁柱线刚度
图5 各梁柱弯矩传递系数
3、计算各节点处的力矩分配系数
计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:
G节点处:?GH?iGH?iGH7.63??0.66 8iGH?iGD7.63?3.79iGD3.79??0.332
iGH?iGD7.63?3.79iHG7.63??0.353
iHG?iHE?iHI7.63?3.79?10.21iHI3.79??0.175
iHG?iHE?iHI7.63?3.79?10.21iHE10.21??0.472
层次分析法
(一)层次分析法 1、层次分析法的概念
“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。”1
2、层次分析法的主要步骤 (1)构建层次分析的结构模型
首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次。其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。
1
张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年
层次分析法的结构模型
在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指标,C层次为方案
层次分析法
一、概念概述
(一)层次分析法(Analytic Hierarchy Process 简称AHP) 是美国运筹学家匹茨堡大学教授萨蒂于本世纪70 年代初提出的一种层次权重决策分析方法。它是一种将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。它不仅可以直接用于多目标、多层次、难于完全用定量方法进行分析决策的系统工程问题,而且也是多目标决策问题中解析地确定各项指标权重的一种有效方法。它将人的主观判断用数量形式表达和处理的方法。
陈永安.基于层次分析法的高校中层干部绩效考评指标体系设计[J].龙岩学院学报2010(4):1
(二)层次分析法,即Analytic Hierarchy Process,简称AHP ,是由Satty提出的一种多准则决策方法,该种方法具有定量和定性相结合处理各种决策因素的特点,再加上其具有简洁、灵活以及系统等方面的优点,致使其被广泛的应用在经济、社会以及电网等众多领域中。层次分析法的原理表现为:建立清晰的层次结构,建立方案属性决策表,以此分析复杂的问题,然后引入测度理论,经过比较后,用相对标度把人的判断标准进行量化处理,形成判断矩阵,通过求解判断矩阵的权重,计算出决策方案的综合权重
层次分析法
(一)层次分析法 1、层次分析法的概念
“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。”1
2、层次分析法的主要步骤 (1)构建层次分析的结构模型
首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次。其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。
1
张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年
层次分析法的结构模型
在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指标,C层次为方案
层次分析法
1.层次分析法简介
层次分析法(The Analytic Hierarchy Process 即AHP)是由美国运筹学家、匹兹堡大学教授T.L.Saaty于20世纪70年代创立的一种系统分析和决策的的综合评价方法,是充分研究了人类的思维过程而提出来的,它是一种定性和定量分析相结合的多目标决策方法。AHP的主要特点是通过递阶层次结构,把人类的判断转化到若干因素的两两比较重要性上,从而把难以量化的定性判断转化为可操作的重要度的比较上面。AHP的本质是把复杂因素分解成多个组成因素,又将这些因素按支配关系分别形成递阶层次结构,通过两两比较的方法确定决策方案相对重要度的总排序。层次分析法社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用。 2.层次分析法原理
2.1建立系统合理的层次结构模型
复杂问题的决策由于所涉及的因素多而复杂,于是处理起来就比较的困难。在应用APH过程中,将所处理的问题涉及的因素条理化、层次化,构造一个有层次的结构模型。在构造的结构模型下,将复杂问题的因素分解成若干个部分,将其称之为元素,这些元素又按其自身的属性及关系形成若干层次,上一层的元素对下一层的有关元素起支配
层次分析法
层次分析法
(analytic hierarchy process,AHP)
一、概述
将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上对人的主观判断做定量描述的一种分析方法。它并不是一种数学模型,而是定量分析与定性分析相结合的典范。
基本步骤:
1、将问题概念化,找出研究对象所涉及的主要因素。
2、分析各因素的关联、隶属关系,构造系统的递阶层次结构。
3、对同一层次的各因素关于上一层次中某一准则的重要性进行两两比较,构造判断矩阵。 4、由判断矩阵计算被比较因素对上一层次该准则的相对权重,并进行一致性检验。
5、计算各层次因素相对于最高层次,即系统目标的合成权重,进行层次总排序,并进行一致性检验。
二、基本原理与计算方法 (一)递阶层次结构
目标层:最高层,只有一个元素
准则层:中间层,可以分为若干个层次 方案层:最底层,也就是措施层
完全层次关系:如果某个元素与下一层次中的所有元素都有关系 不完全层次关系:如果某个元素只与下一层次中的部分元素有关系 完全层次结构:如果一个递阶层次结构的所有层次都是完全层次关系 不完全层次结构:反之
主要特征:
1.从上到下顺序地存在支配关系
2.整个结构中层次数不受限制,最高层次的元素即