积分公式

“积分公式”相关的资料有哪些?“积分公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“积分公式”相关范文大全或资料大全,欢迎大家分享。

积分公式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

2.基本积分公式表

(1)∫0dx=C (2)(3)(4)(5)

=ln|x|+C

(m≠-1,x>0) (a>0,a≠1)

(6)∫cosxdx=sinx+C (7)∫sinxdx=-cosx+C (8)∫sec2xdx=tanx+C (9)∫csc2xdx=-cotx+C (10)∫secxtanxdx=secx+C (11)∫cscxcotxdx=-cscx+C (12)(13)注.(1)(2)

=arcsinx+C =arctanx+C 不是

在m=-1的特例.

=ln|x|+C ,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.

事实上,对x>0,(ln|x|)' =1/x;若x<0,则 (ln|x|)' =(ln(-x))' =(3)要特别注意积分.

下面我们要学习不定积分的计算方法,首先是四则运算.

3.不定积分的四则运算

根据微分运算公式 d(f(x)?g(x))=df(x)?dg(x)

.

的区别:前者是幂函数的积分,后者是指数函数的

d(kf(x))=kdf(x)

我们得不定积分的线性运算公式

(1)∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx (2)∫kf(x)dx=k∫f(x)dx,k是非零常数.

现在可利用这两个公式与基本积分公式来计算简单不定积分.

常用积分公式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

常 用 积 分 公 式

(一)含有ax?b的积分(a?0) 1.

dx1=?ax?balnax?b?C

2.(ax?b)dx=

??1(ax?b)??1?C(???1)

a(??1)3.

x1dx(ax?b?blnax?b)?C =?ax?ba2x21?1?dx=3?(ax?b)2?2b(ax?b)?b2lnax?b??C 4.?ax?ba?2?5.

dx1ax?b=??x(ax?b)blnx?C

6.

?dx1aax?b=??ln?C 22x(ax?b)bxbx7.

1bx(lnax?b?)?C dx=?(ax?b)2a2ax?b1b2x2)?C 8.?dx=3(ax?b?2blnax?b?aax?b(ax?b)29.

?dx11ax?b=?ln?C

x(ax?b)2b(ax?b)b2x(二)含有ax?b的积分

23(ax?b)?C ?3a2(3ax?2b)(ax?b)3?C 11.?xax?bdx=215a22(15a2x2?12abx?8b2)(ax?b)3?C 12.?xax?bdx=3105a10.

ax?bdx=13.

?2xdx=2(ax?2b)ax?b?C

3aax?b1

14.

?2x2(3a2x2?4abx?8b2)ax?b?C dx=31

微积分-积分公式定理集锦

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

各种积分公式,公式大概分为四类,

北京理工大学

微积分-积分定理集锦

常用积分公式 定理

程功 2010/12/22

各种积分公式,公式大概分为四类,

定理

1.积分存在定理

1)当函数f(x)在区间 a,b 上连续时,称f(x)在区间 a,b 上可积.

2)设函数f(x)在区间 a,b 上有界,且只有有限个间断点,则f x 在区间 a,b 上可积。

2.性质:1 [f(x) g(x)]dx f(x)dx g(x)dx(此性质可以推广到有限多个函数求和的

a

a

a

bbb

情况)。

性质2. kf(x)dx k f(x)dx k为常数

a

a

bb

假设a c b,性质3: f(x)dx f(x)dx f(x)dx(定积分对于积分区间具有可加性)

a

a

c

bcb

性质4: 1 dx badx b a

a

b

性质5:如果在区间 a,b 上f(x) 0,则 f(x)dx 0 (a b)

a

b

推论(1):如果在区间[a,b]上,f(x) g x 则 f(x)dx g(x)dx(a b)

a

a

bb

推论(2):

b

a

f()xdx fx a b

a

b

性质6:设M及m分别是函数f x 上的最大值与最小值,则

m(b a) f(x)dx M(b a)

a

b

3.定积分中值定理

如果函数f x

不定积分基本公式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

不定积分基本公式

第二节 不定积分的基本公式和直接积分法(Basic Formula of Undefined

Integral and Direct Integral)

课 题:1. 不定积分的基本公式 2. 不定积分的直接积分法 课堂类型:讲授 教学目的:熟练掌握不定积分的基本公式,对简单的函数能用直接积分法进行积分。 教学重点:不定积分的基本公式 教学难点: 直接积分法 教 具:多媒体课件 教学方法: 教学内容:

一、不定积分的基本公式

由于不定积分是求导的逆运算,所以由导数的基本公式对应地可以得到不定积分的基本公式。 导数的基本公式 不定积分的基本公式

(C) 0x 1

(x 1)

1 x (ex) ex(ax) axlna1x

(sinx) cosx(cosx) sinx(lnx) (tanx) sec2x(cotx) csc2x(secx) secxtanx(cscx) cscxcotx(arcsinx)

1

(arctanx)

1 x2

(arccosx) 1

(arccotx)

1 x21

(logax)

xlna

0dx C dx x C

x 1

xdx 1

所有微积分公式《全》

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

所有微积分公式《全》



·两角和与差的三角函数

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  ·和差化积公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  ·积化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ

4.1不定积分的概念与基本积分公式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高等数学 不定积分 换元积分法 分部积分 不定积分在经济问题中的应用 不定积分习题

第4 章

不定积分

4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法

高等数学 不定积分 换元积分法 分部积分 不定积分在经济问题中的应用 不定积分习题

第4 章基本要求

不定积分

了解原函数提出的背景; 了解原函数提出的背景; 理解并掌握不定积分概念,了解不定积分的几何意义; 理解并掌握不定积分概念 了解不定积分的几何意义; 了解不定积分的几何意义 掌握不定积分的性质,熟记基本积分公式; 掌握不定积分的性质,熟记基本积分公式; 掌握不定积分的直接积分法,凑微分法 第二换元积分法 掌握不定积分的直接积分法 凑微分法,第二换元积分法 根号 凑微分法 第二换元积分法(根号 中为一次函数)、分部积分法,会求不定积分。 中为一次函数 、分部积分法,会求不定积分。 理解与掌握不定积分和简单应用, 理解与掌握不定积分和简单应用,会用不定积分解决简单的 实际问题。 实际问题。

高等数学 不定积分 换元积分法 分部积分 不定积分在经济问题中的应用 不定积分习题

教学内容: 教学内容:不定积分的概念与基本积分公式 引入

前面我们研究了一元函数微分学的基本问题, 前面我们

考研数学:微积分公式汇总

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

考研数学:微积分公式汇总

凯程考研集训营,为学生引路,为学员服务!

第 2 页 共 2 页

凯程考研集训营,为学生引路,为学员服务!

第 3 页 共 3 页

凯程考研集训营,为学生引路,为学员服务!

第 4 页 共 4 页

一分耕耘一分收获。加油!

导数,微积分公式Word 文档

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

四、基本求导法则与导数公式

1. 基本初等函数的导数公式和求导法则

基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1)

(C)??0 (3) (sinx)??cosx (5)

(tanx)??sec2x (7) (secx)??secxtanx

xx (9)

(a)??alna (log1ax)?? (11)

xlna

(arcsinx)??1 (13)

1?x2

(arctanx)??1 (15)

1?x2

函数的和、差、积、商的求导法则 设

u?u(x),

v?v(x)都可导,则

(1) (u?v)??u??v? (2)(3)

(4)(uv)??u?v?uv? 反函数求导法则

(x?)???x??1 (cosx)???sinx

(cotx)???csc2x

(cscx)???cscxcotx

(ex)??ex

(lnx)??1x,

(arccosx)???11?x2

(arccotx)???11?x2(Cu)??Cu?(C是常数)

???u??u?v?uv??v

常用的求导积分公式及解法

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

常用的求导积分公式及解法

常用的求导积分公式及解法 1.基本求导公式

⑴ (C) 0(C为常数)⑵ (xn) nxn 1;一般地,(x ) x 1。 特别地:(x) 1,(x2) 2x,()

1x

11

,。 (x) 2

x2x

⑶ (ex) ex;一般地,(ax) axlna (a 0,a 1)。 ⑷ (lnx)

11

(a 0,a 1)。 ;一般地,(logax)

xxlna

2.求导法则 ⑴ 四则运算法则

设f(x),g(x)均在点x可导,则有:(Ⅰ)(f(x) g(x)) f (x) g (x); (Ⅱ)(f(x)g(x)) f (x)g(x) f(x)g (x),特别(Cf(x)) Cf (x)(C为常数); (Ⅲ)(

f(x)f (x)g(x) f(x)g (x)1g (x)

,特别。 ) , (g(x) 0)() 22

g(x)g(x)g(x)g(x)

3.微分 函数y f(x)在点x处的微分:dy y dx f (x)dx 4、 常用的不定积分公式

1 1x2x32

xdx 1x C ( 1), dx x c, xdx 2 c, xdx 3(1) ;

4x3

xdx c 4

1axxxx

C (a 0,

§3 柯西积分公式及其推广

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第三章 复变函数的积分(II)

§3-3 柯西公式【教材P36-42】

(一) 单连通区域中的柯西公式

柯西公式: 设复变函数f?z?在闭单连通区域D(?D?l)中解析(l是区域

D的边界线), 则f?z?在区域D内任一点? ???D?的值可由沿边界线的积

分确定(积分路径沿区域边界线的正方向进行): f?????2?i?1f?z?lz??dz,

??f?z?lz??dz?2?if(?),

柯西公式说明: 解析函数在其解析区域内任一点的函数值可由函数在该区域边界上的值来确定。这是解析函数的重要性质之一。

证明: 对于任意固定的??D,由前面的例子知:

两边乘以f???,得: 因此只要证明: ??l??2?if11z???1ldz?1 f????????2?i???f?z?z??lz??dz,

f?z??fz???0,即得:

??ldz???f???lz??dz?2?if???,

这就证得柯西积分公式。

22

f?z??f???作为z的函数在D内除z??点外均解析。以z??为圆心,很小

z??的?为半径,作圆周c?。由复连通区域的柯西定理,得:

??f?z??f???lz??dz???f?z??f???cz