差分放大器中Rd的作用
“差分放大器中Rd的作用”相关的资料有哪些?“差分放大器中Rd的作用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“差分放大器中Rd的作用”相关范文大全或资料大全,欢迎大家分享。
差分放大器的结构、特点及作用
1. 差分放大器的结构、特点及作用 特点:
差分信号作为输出可以增大最大输出压摆。
差分工作模式,能很好抑制环境噪声(如电源噪声),即所谓的共模抑制。虽然这是以电路面积为代价的,但对于在单端模式时采用其它的方法来抑制环境噪声的干扰的电路面积而言还是较小的。 差分电路还具有偏置电路简单和线性度高等优点。
VDDR1Vo1Vi1AM1R2BM2Vo2Vi2Vi1Vo1ISM1AR1M2BR2Vi2Vo2VDDIS结构: 应用:
2. 基本差分对中的尾电流源的作用
为差分对提供一个电流源IS,以使差分对具有固定的尾电流,从而产生独立于输入共模信号Vic的电流ID1+ID2。
在共模输入时差分对管的工作电流ID1=ID2= IS/2,并且保持恒定; 同理,其共模输出电平也保持恒定,且其值为VDD-RIS/2(R为负载等效电阻)。 解决了由于差分对管在共模输入时的工作电流变化引起非线性及输出信号失真等。
3. 各类差分放大器的增益(共模增益、差模增益)、输入输出共模电平范围、
线性增益区的范围(对所给电路图分析计算)
(Vo1?Vo2)(2Vi1)??gmR 双端输入双端输出时的差模电压增益 双端输入单端输出差模电压增益
在理想情况
实验四 差分放大器
实验四 差分放大器
实验目的:
1、掌握差分放大器偏置电路的分析和设计方法;
2、掌握差分放大器差模增益和共模增益特性,熟悉共模抑制概念; 3、掌握差分放大器差模传输特性。
一、实验预习。
根据图示电路计算电路性能参数。 电路图:
ICQ(mA) V1(V) V2(V) gm(mS) Rid(Ω) Avd Avc KCMR 1.0166 2.967 2.967 39.1 8.679 -78.186 -1.946 20.089 二、实验内容。
1、在Multisim中对电路进行直流工作点分析。 电路图:
ICQ(mA) 1.00125 V1(V) 2.9975 V2(V) 2.9975 V3(V) 1.0034 V4(V) 1.5765 V5(V) 1.5549 2、固定输入信号频率为2kHz,输入不同信号幅度时,测量电路的差模增益。观察输出波形,计算差模增益Avd,观察并记录节点1的基波功率和谐波功率。 输入信号单端幅1 10 20 度(mV) Avd -72.945 -70.25 -63.00 基波功率(dBm) -24.179 -4.545 0.735 二次谐波(dBm) -97.123 -57.937 -46.529 三次谐
使用差分放大器驱动模数转换器
高速差分放大器让包含高速模数转换器(ADC)的信号链设计更加灵活。差分运放能提供包括增益,阻抗变换和单端到差分转换等的信号调理功能。
维普资讯
l金 I目辑栏编何玉模拟器件
技术长廊
使用差分放大器驱动模数转换器U ig Di e e ta Ampie st r e An lg t i i l o v re s sn f r n il f lir o D i ao o D gt n e t r f v aC●美国国家半导体公司应用工程师 L rnSe et oe ib r而高速差分放大器让包含高速模数转换器互调制与谐波失真落在带外的信号,对宽带 ( DC的信号链设计更加灵活。 A )差分运放能提信号这些将落在带内。下来我们将更详细讨接供包括增益,抗变换和单端到差分转换等的论如何根据信号和 AD的特性来选择器件。阻 C信号调理功能。
首先我们来回顾一下 AD C基础知识。作为一
AD C一般是固定增益的器件,当输入信
个混合信号器件,A DC包括模拟和数字电
号幅值小于满量程的输入范围的时候性能最路。A C的数字部分工作在时钟采样频率下, D 好。幅值不足一个最低有效位 L B的信号进在一个特定的应用中,对 S该频率通常是固定的。该行量化时
加法器及差分放大器项目实验报告 - 图文
加法器及差分放大器项目实验报告
一、项目内容和要求 (一)、加法器 1、任务目的:
(1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理;
(3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容:
2.1 设计一个反相加法器电路,技术指标如下:
(1)电路指标
运算关系:UO??(5Ui1?2Ui2)。 输入阻抗Ri1?5K?,Ri2?5K?。
(2)设计条件
电源电压Ec=±5V; 负载阻抗RL?5.1K?
(3)测试项目
A:输入信号Ui1??0.5V,Ui2??0.5V,测试4种组合下的输出电压;
B:输入信号Ui1??0.5V,Ui2为正弦波1KHz,0.1V信号,测试两种输入组合情况下的输出电
压波形。
C:输入信号Ui1?0V,改变Ui2的幅度,测量该加法器的动态范围。
D:输入信号Ui1?0V,Ui2为正弦波,1V,改变正弦波的频率,从1kHz逐渐增加,步长为
2k
加法器及差分放大器项目实验报告 - 图文
加法器及差分放大器项目实验报告
一、项目内容和要求 (一)、加法器 1、任务目的:
(1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理;
(3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容:
2.1 设计一个反相加法器电路,技术指标如下:
(1)电路指标
运算关系:UO??(5Ui1?2Ui2)。 输入阻抗Ri1?5K?,Ri2?5K?。
(2)设计条件
电源电压Ec=±5V; 负载阻抗RL?5.1K?
(3)测试项目
A:输入信号Ui1??0.5V,Ui2??0.5V,测试4种组合下的输出电压;
B:输入信号Ui1??0.5V,Ui2为正弦波1KHz,0.1V信号,测试两种输入组合情况下的输出电
压波形。
C:输入信号Ui1?0V,改变Ui2的幅度,测量该加法器的动态范围。
D:输入信号Ui1?0V,Ui2为正弦波,1V,改变正弦波的频率,从1kHz逐渐增加,步长为
2k
锁相放大器
锁相放大器实验
锁相放大器实验(Lock-in amplifier),简称LIA。它是一个以相关器为核心的检测微弱信号仪器,它能在强噪声情况下检测微弱正弦的幅度和相位。学习本实验的目的是使同学了解锁相放大器的基本组成,掌握锁相放大器的正确使用方法。
一、锁相放大器的基本组成
结构框图如图1所示。它有四个主要部分组成:信号通道、参考通道、相关器(即相关检测器)和直流放大器。
x(t) 前放 滤波 放大 乘法 低通 自流放大器 U0 r(t) 放大 移相 方波 图1 锁相放大器的基本结构框架
1. 信号通道
信号通道包括:低噪音前置放大器、带通滤波器及可变增益交流放大器。
前置放大器用于对微弱信号的放大,主要指标是低噪音及一定的增益(100~1000倍)。 可变增益放大器是信号放大的主要部件,它必须有很宽的增益调节范围,以适应不同的信号的需要。例如,当输入信号幅度为10nV,而输出电表的满刻度为10V时,则仪器
93
总增益为10V/10nV =10若直流放大器增益为10倍,前置放增益为10,则交流放大器的
5
增益达10。
带通滤波器是任何一个锁相放大器中必须设置的部件,它的作用是对混在信号中的噪音进行滤波,尽量排除带外噪音。这样不仅可以避免
实验2 仪器放大器和差动放大器29
实验2 仪器放大器和差动放大器
13223529 电信132
一.实验目的
(1)熟悉仪器放大器及其工作原理。 (2)熟悉差动放大器及其工作原理。
(3)掌握OPA2111、INA106的使用方法和应用电路。 (4)学会自动校零的方法,并会应用。
(5)熟悉小信号放大器的性能和特点,并会应用。 二.实验内容 1.电路设计与仿真
参照图11-2-5设计自动校零仪器放大器,图11-2-6设计高精度差动放大器,用Proteus 软件(或Multisim软件)对以上两个电路进行仿真,并记录仿真结果。 2.自动校零
当开关S1打在2、开关S2打在4时,完成自动校零功能,即零输入时,实现零输出。用数字万用表测量输出电压Uo,并记录数值。
图2-1
3.仪器放大器-1
当开关S1打在1、开关S2打在3时,完成小信号放大功能。 (1)用信号发生器在输入端Ui输入正弦信号,
频率为300Hz,电压(峰峰值)为50mV。用数字示波器观察输出端Uo的波形,并记录输出电压数值,计算放大倍数。
图2-2
输出电压=2.5V,放大倍数=
由集成运算放大器组成的波形放大器窝 - 图文
广州大学学生实验报告
开课学院及实验室: 机电学院 电子实验楼402室 2013年 12 月 13 日
学院 机械与电气年级、专12级、电气自工程学院 业、班 动化、电气121 姓名 陈海兵 学号 1207300045 实验课程名称 模拟电子技术实验 成绩 实验项目名称 由集成运算放大器组成的波形放大器 指导老师 陈虹 一、实验目的 1、 学习用集成运放构成正弦波、方波和三角波发生器。 2、 学习波形发生器的调整和主要性能指标的测试方法。 二、实验原理 由集成运放构成的正弦波、方波和三角波发生器有多种形式,本实验选用最常用的,线路比较简单的几种电路加以分析。 1、 RC桥式正弦波振荡器(文氏电桥振荡器) 图11-1为RC桥式正弦波振荡器。其中RC串、并联电路构成正反馈支路,同时兼作选频网络,R1、R2、RW及二极管等元件构成负反馈和稳幅环节。调节电位器RW,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管D1、D2正向电阻的非线性特性来实现稳幅。D1、D2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。R3的接入是为了削弱二极管非线性的影响,以改善波形失真。 电路的振荡频率 :fO
DVI 延长放大器
DVI 延长放大器
概念:
长距离信号连接,DVI线材仅支持24号线/15米/1080P,超过此长度,则信号衰减亦供电不足。DVI信号延长线(15-50米),将放大器内置其中,布线简单,但相对昂贵。DVI网络延长器(50-100米),一收一发设置,外接电源,但布线繁琐。
鼎力DVI延长放大器(0-30米)取两者精华,连接DVI线缆,放大DVI信号。内置芯片放大信号,外接USB增强供电,亦支持USB外接供电。最高支持1920×1200@60Hz或者HDTV 1080P的信号延长至30米。广泛运用为DVI接口的长距离信号传输,如DVI画面分割器。尤其对于已经埋线的布线工程,具有弥补性作用。
应用范围
计算机显示及高清监控系统/教育、银行证卷系统/数字平板显示屏、大屏幕显示系统/高清影像显示、高清视频会议、高清投影系统/高清医学影象显示及投影系统/远程教育投影系统
结构原理
DVI输入==>> DVI 均衡器(放大信号)==>> DVI输出
技术优势
* 内置稳定芯片,放大延长信号
* 最高分辨率支持4K支持分辨率19200x1200@60hz最远传输35米 * 对于长距离供电减弱,辅助供电 * 标准USB A型接口,方便现场连接 * DVI连接输
运算放大器
摘 要
摘 要
运算放大器是模拟集成电路中最重要的,通用的单元模块,增益和单位增益带宽是衡量运算放大器性能优劣的两个最重要的指标,长期以来不断地提高运放的增益和单位增益带宽指标一直是高性能运放设计的努力方向之一。同时随着便携式应用和生物医学应用的发展,低电源电压,低功耗模拟和混合信号集成电路的需求也会增大,所以,低电压低功耗的运算放大器设计也是非常必要的
本文对衬底驱动MOSFET技术进行了研究和分析,对不同结构的放大器电路进行了对比,在此基础上设计了一个输入级为衬底驱动的高带宽高增益运算放大器电路。运放采用两级结构,输入级为衬底驱动的差动输入对结构,有效避开了阈值电压的限制。
电路基于SMIC 0.18μm CMOS工艺设计,在1.8V的电源电压下采用Cadence Spectre软件进行仿真,并完成多种工艺角下的AC特性仿真。最终测得直流开环增益为81.08dB,单位增益带宽42.14MHz,相位裕度PM=65.93°,输出电压范围为273mV~1.59V,功耗为864μW。
关键词:模拟集成电路 衬底驱动 跨导运算放大器 高带宽高增益
ABSTRACT
ABSTRACT
Operational amplifier is the