电力电子与电力传动
“电力电子与电力传动”相关的资料有哪些?“电力电子与电力传动”相关的范文有哪些?怎么写?下面是小编为您精心整理的“电力电子与电力传动”相关范文大全或资料大全,欢迎大家分享。
电力电子与电力传动实训实验指导书
电力电子与电力传动实训实验指导书
西南交通大学电气工程学院电气工程专业实验中心
二零一四年二月
目录
1.概述.......................................................................................................................12.总体技术参数......................................................................................................2
2.1系统参数...................................................................................................22.2系统构成...................................................................................................2
2.2.1实验台.........................
电力电子与电气传动综合课程设计
电力电子与电气传动综合课程设计任务书
一、目的及要求:
通过电力电子与电气传动的综合课程设计教学环节,使学生掌握以直流电动机为对象组成的运动控制,包括转速单闭环调速系统,转速、电流双闭环控制调速系统,静态、动态性能分析及工程设计方法,掌握以交流电动机为对象组成的运动控制,包括基于稳态模型和动态模型的异步电动机调速系统以及同步电动机调压调速系统的工作原理和性能特点。
通过该课程的学习,培养学生理论联系实际的能力,掌握电气传动控制系统的工作原理和设计方法,从实际出发,深入地进行理论分析,应用理论解决电气传动系统中的实际问题,提高学生分析问题和解决问题的能力。检验同学们对所学知识的掌握程度和运用能力。 二、内容及步骤: 内容:
1. 设计一个三相桥式全控整流电路,电源相电压为220V,利用可调的直流电压驱动直流电机进行调速,仿真观察整流电路输出电压和电流波形,电机电流、转速、转矩变化曲线。
2. 设计一个双闭环直流电动机调速系统,整流装置采用三相桥式电路,电动机参数:UN=220V,IdN=136A,nN=1460r/min,Ce=0.132V.min/r, 过载倍数λ=1.5,整流装置放大系数Ks=40,电枢回路总电阻R=0.5欧,时间常数Tl
电力电子与电气传动综合课程设计
电力电子与电气传动综合课程设计任务书
一、目的及要求:
通过电力电子与电气传动的综合课程设计教学环节,使学生掌握以直流电动机为对象组成的运动控制,包括转速单闭环调速系统,转速、电流双闭环控制调速系统,静态、动态性能分析及工程设计方法,掌握以交流电动机为对象组成的运动控制,包括基于稳态模型和动态模型的异步电动机调速系统以及同步电动机调压调速系统的工作原理和性能特点。
通过该课程的学习,培养学生理论联系实际的能力,掌握电气传动控制系统的工作原理和设计方法,从实际出发,深入地进行理论分析,应用理论解决电气传动系统中的实际问题,提高学生分析问题和解决问题的能力。检验同学们对所学知识的掌握程度和运用能力。 二、内容及步骤: 内容:
1. 设计一个三相桥式全控整流电路,电源相电压为220V,利用可调的直流电压驱动直流电机进行调速,仿真观察整流电路输出电压和电流波形,电机电流、转速、转矩变化曲线。
2. 设计一个双闭环直流电动机调速系统,整流装置采用三相桥式电路,电动机参数:UN=220V,IdN=136A,nN=1460r/min,Ce=0.132V.min/r, 过载倍数λ=1.5,整流装置放大系数Ks=40,电枢回路总电阻R=0.5欧,时间常数Tl
电力系统与电力电子
电力电子与电力传动
一、学科概况
电力电子与电力传动是一个与电能的变换与控制密切相关的应用基础学科。它是近年来发展较快的交叉学科。它综合了电能变换、电磁理论、控制理论、电子技术、计算机等学科的知识。它以控制理论为基础,运用计算机、数字信号处理器和微电子技术为手段,控制电力半导体器件开关来实现电能的变换,达到不同的使用目的。目前,电力电子技术已经广泛应用于工业生产中,如高效率、高质量的电源技术,电机传动调速系统、电力系统电能质量控制、新型直流输电技术和交流灵活输电技术等领域。电力电子与电子传动学科主要研究新型电力电子器件、电能的变换与控制、功率源、电力传动及其自动化等理论技术和应用。 在电气工程学科下,我校有电力电子与电力传动、电力系统及其自动化两个二级学科硕士点。本学科主要从事大功率整流、变流、逆变装置,电机传动装置以及与上述装置有关的控制理论和技术,故障检测、保护、仿真技术等方面的教学和研究。本学科现有教授6人,副教授14人。
学科专业研究方向
1.电力电子技术在电力系统中的应用
研究电力电子技术在电力系统中的应用。应用现代电力电子技术和控制技术实现电能质量控制,包括电力系统无功补偿、电力系统有源滤波技术和瞬
电力电子作业 -
作业1
1.1 指出常用器件可达的功率与频率能力
SCR , GTO, IGBT , MOSFET, 功率能力:SCR(10MW)>GTO(MW)>IGBT(百KW)>MOSFET(10KW) 频率能力:MOSFT(百KHz)>IGBT(10KHz)>GTO(1KHz)>SCR(几百Hz)
1.2 一SCR需承受电流平均值100A, 电压峰值300V, 选择其电流电压定额 电压定额UTIT(AV):2*300V=600V 电流定额IT(AV):1.5*100A=150A 1.3 简述SCR正常导通条件, 非正常导通条件 正压,门极触发; 过压,过电压上升率,过温 1,4简述变流器件常用工作状态与损耗种类. 工作状态:通态、断态、开关状态
损耗种类:稳态损耗:通态损耗、断态损耗 动态损耗:开通损耗、关断损耗 作业2
2.1 简述器件驱动信号基本要求 足够的幅度、陡度、宽度
及良好的可靠性、抗扰性、电气隔离性。 2.2 简述MOSFET、IGBT常用开通与关断正压.
MOSFET常用开通电压为10~15V,关断电压为-5~-15V IGBT常
电力电子答案
燕山大学毕业设计论文(专用纸)
第一章 电力电子器件
1.1 使晶闸管导通的条件是什么?
答:使晶闸管导通的条件是:晶闸管承受正相阳极电压,并在门极施加触发电流(脉冲)。或者UAK >0且UGK>0 1.2 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?
答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。
1.3 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为Im , 试计算各波形的电流平均值Id1,Id2,Id3与电流有效值I1,I2,I3
1?Im2解:a) Id1=Imsin(?t)?(?1)?0.2717Im 42???2?2 I1=
1?Im312(Imsin?t)d(wt)???0.4767Im ??2?4242?1?Im2 b) Id2=??Imsin?td(wt)?(?1)?0.5434Im
?422I2=
1?2Im312(Imsin?t)d(wt)???0.6741Im ???4242??121Imd(?t)?Im c)
现代电力传动系统
异步电动机矢量控制系统
1 异步电动机矢量控制原理
异步电动机的数学模型是一个高阶、非线性、强耦合的多变量系统,虽然通过坐标变换可以使之降阶并化简,但并没有改变其非线性、多变量的本质,因此,需要异步电动机调速系统具有高动态性能时,必须面向这样一个动态模型。经过多年的潜心研究和实践,有几种控制方案已经获得成功的应用,目前应用最多的方案有: (1)按转子磁链定向的矢量控制系统; (2)按定子磁链控制的直接转矩控制系统。三相交流异步电机矢量控制理论用来解决交流电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量。
矢量控制要求对异步电机的动态数学模型进行化简,将定子电流分解为转矩分量和励磁分量,通过控制矢量电流i的幅值和方向去等效地控制三相电流ia、ib、ic的瞬时值,从而调节电机的磁场和转矩以达到调速的目的。矢量控制系统的原理结构图如图1-1
图1-1 矢量控制系
内燃机车电力传动
第一节 概述
内燃机车的原动机一般都是柴油机,从柴油机曲轴到机车动轮(轮对)之间,需要一套速比可变的中间环节,这一中间环节称为传动装置。内燃机车的传动装置有电力传动、液力传动和机械传动三种,电力传动又分为直-直流电力传动、交-直流电力传动、交-直-交流电力传动和交-交电力传动,目前国内使用的DF4、DF5、DF7、DF8、DF11等型机车均采用交-直流电力传动。 一、电力传动装置的作用 1.传动作用
将机车柴油机曲轴输出的机械能进行能量变换,传递给轮对,驱动机车运行,并使机车具有理想的牵引特性。要求机车牵引力和运行速度都有一个比较宽广的变化范围,并且在较大的机车速度范围内,柴油机都始终在额定工况下运行,即柴油机的功率能够得到充分发挥和利用。此外,机车应具有足够高的启动牵引力。 2.制动作用
利用直流电机的可逆原理,在电阻制动工况时,将直流牵引电动机改为直流发电机,通过轮对将列车的动能转变为电能,消耗在制动电阻上,在以热能的形式逸散到大气中。在这过程中,牵引电动机轴上所产生的反力矩作用于机车动轮上而产生制动力。这种制动作用称为电阻制动。传动装置应保证机车电阻制动性能的要求。 3.辅助作用
驱动机车辅助装置的一些泵组工作,或对机车系统中的油水经
电力电子技术
作者:范兴荣
电力电子技术
第一部分
一、
电力电子技术的定义
电力电子技术是一门利用电力电子器件、电路理论和控制技术对电能进行处理、控制和变换的学科,是现代电子学的一个重要分支,也是电工技术的分支之一。
电力电子技术是应用于电力领域的电子技术。具体地说,就是使用电力电子器件对电能进行变换和控制的技术。
二、电力电子技术的研究内容
电力电子技术的研究内容:
1、电力电子器件 2、变流技术 3、控制技术
或者说,电力电子技术的研究内容:电子学、电力学、控制理论
三、与其它学科的关系
1、与微电子学的关系
三个相同点: (1)都分为电子器件和电子电路两大分支,二者同根同源
(2)两类器件制造技术的理论基础相同; (3)制造工艺也基本相同。
两个不同点:
(1)应用目的不同——前者用于电力变换,后者用于信息处理; (2)工作状态不同——在微电子技术中,器件既可以处于放大状态,也可以处于开关状态;而在电力电子技术中为避免功率损耗过大,电力电子器件总是工作在开关状态。
2、与电力学(电气工程)的关系
(1)电力电子技术广泛用于电气工程中;
(2)国内外均把电力电子技术归为电气工程的一个分支; (3)电力电子技术是电气工程学科中最为活跃的一个
电力电子复习整理
第一章
电力电子技术的概念
根据电力电子器件的特性、采用一种有效的静态变换和控制方法,将一种电能形式转换为另一种电能形式的技术。
电力电子功率变换的分类 AC/DC变换 整流器 DC/AC变换 逆变
有源逆变 DC/AC变换时,交流输出与电网相连。
无源逆变 DC/AC变换时,交流输出直接与负载相连 。 AC/AC变换 变频器 DC/DC变换 直流斩波 第二章
功率半导体器件分类
不可控型: 功率二极管:导通和关断均由电路潮流决定。
半可控型: 晶闸管:在器件在承受正向电压时,由控制信号控制器件的导通,而关断状态由电路潮流决定。
全控型: 可控开关 :由控制信号控制器件的导通和关断。 绝缘栅双极晶体管(IGBT) 门极可关断晶闸管(GTO ) 电力场效应晶体管(MOSFET) 双极结型晶体管(BJT)
绝缘栅门极换流晶闸管(IGCT)
二极管的工作原理、特性和分类
当功率二极管承受正向电压时,它的正向导通压降很小,大约在1V左右。 当功率二极管承受反向电压时,只有极小的漏电流可通过该器件。 正向平均电流IF(AV)
设正弦半波电流的峰值为Im,则额定电流为:
IF(AV)1?2???0Imsin