指数运算与指数函数教学设计
“指数运算与指数函数教学设计”相关的资料有哪些?“指数运算与指数函数教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“指数运算与指数函数教学设计”相关范文大全或资料大全,欢迎大家分享。
指数运算和指数函数
第五讲 指数运算和指数函数
一、知识点
1.根式的性质
nan?
2.幂的有关概念
(1)正整数指数幂:an?a??a??a.............a(n?N?) ?????n?p(2)零指数幂a?1(a?0) (3)负整数指数幂 a?01(a?0.p?N?) pa(4)正分数指数幂 amn?nam(a?0,m,n?N?,且n?1)
mn(5)负分数指数幂 a??1amn(a?0,m,n?N?,且n?1)
(6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)a?a?arrrsr?s,(a?0,r,s?Q) (2)(ar)s?ars,(a?0,r,s?Q)
s (3)(ab)?a?a,(a?0,b?0,r?Q)
4.指数函数定义:函数y?a(a?0且a?1)叫做指数函数。 5. 指数函数的图象和性质
xy?ax 0 < a < 1 a > 1 图 象 定义域 性 质 值域 定点 单调性 对称性 y?ax和y?a?x关于 对称
1.函数y?(x?5)0?(x?2)
?12
( )
A.{x|x?5,x?2}
2.6 指数与指数函数
指数与指数函数
要点梳理1. 根式的概念根式的概念
忆一忆知识要点
符号表示
备注
如果xn=a,那么 x 叫做 a 的n次方根. n为奇数时,正数的奇 次方根是正数;负数的奇次 方根是负数. n为偶数时,正数的偶 次方根有两个且互为相反 数.n
n>1,且 n∈N*.
a
零的n次方根是零
n a (a 0) 负数没有偶次方根
要点梳理2. 两个重要公式
忆一忆知识要点
公式 (1) ( a ) a.n n
适用范围: ①当n为大于1的奇数时, a∈R.
②当n为大于1的偶数时, a≥0.公式 (2)n
a , n 2k 1, k N , a = | a |, n 2k , k N .
n
要点梳理3. 幂的有关概念 幂指数 正整数 指数
忆一忆知识要点
a a a a n
定义
条件
零指数 负整数 指数 正分数 指数 负分数 指数
a 10
n个a
n N ,a R
a 0n N ,a 0 m
a 1n a n
aa m n
m n
n
an
a>0,m,n N*,n>1a>0,m,n N*,n>1
1 m an
1 am
规定: 0的正分数指数幂为0, 0的负分数指数幂没有
2.4 指数与指数函数
§2.4 指数与指数函数
(时间:45分钟 满分:100分)
一、选择题(每小题7分,共35分)
1.下列等式3
6a 3=2a ;3-2=6(-2)2;-342=4(-3)4×2中一定成立的有( )
A .0个
B .1个
C .2个
D .3个
2.把函数y =f (x )的图象向左、向下分别平移2个单位长度得到函数y =2x 的图象,则( )
A .f (x )=2x +
2+2
B .f (x )=2x +
2-2
C .f (x )=2x -2+2
D .f (x )=2x -
2-2
3.函数y =a |x |(a >1)的图象是( )
4.函数f (x )=a x
-b
的图象如图所示,其中a 、b 为常数,则下列结论正确的 是
( )
A .a >1,b <0
B .a >1,b >0
C .00
D .0
5.设232
555
322(),(),()555
a b c ===,则a ,b ,c 的大小关系是 ( )
A .a >c >b
B .a >b >c
C .c >a >b
D .b >c >a
二、填空题(每小题6分,共24分)
6.已知函数f (x )=|2x -1|,a f (c )>f (b ),则下列结论中,一定成立的是________. ①
《指数函数》
4.2.1 指数函数及其图像与性质
【教学目标】 1.知识与技能目标:
使学生理解指数函数的定义、图象及性质,培养学生正确使用几何画板工具。 2.过程与方法目标:
在实验活动过程中引领学生主动探索指数函数性质,启动观察、分析、归纳、总结、抽象概括等思 维活动,培养学生的思维能力,体会学习数学规律的方法。 3.情感态度与价值观:
让学生感受数学问题探索的乐趣,体验成功的喜悦,体会辨证的思维及数学图形的和谐美。
【教学重、难点】
教学重点:理解指数函数的定义、图象及性质。 教学难点:指数函数性质的归纳与运用。
【教学方法】
我校汽修专业的学生数学基础比较薄弱,学生对数学普遍不感兴趣。本节课概念性比较强,而且突出数学图形的运用,这恰是学生学习的弱项,但是思想比较活跃的他们对新事物具有强烈的好奇心,动手能力、观察能力比较强。因此本节课主要采用数学实验教学活动的方法,通过结合计算机软件工具,让学生在实验活动过程中来去体验、感悟知识,让学习成为一种愉悦的主动认知过程,切实做到将数学课堂还给学生。
【教学过程】 1.流程 (1)教学流程:
创设情境 激发兴趣引出新知 形成概念深入探究 引导发现巩固提高 灵活运用归纳总结 新知梳理分层作业共同提高
§2.4指数与指数函数
§2.4指数与指数函数
基础自测
1. 已知a<,则化简的结果是 . 答案
2.设指数函数f(x)=ax(a>0且a≠1),则下列等式正确的有 (填序号). ①f(x+y)=f(x)·f(y) ②f(xy)n=f n(x)·f n(y)
③f(x-y)= ④f(nx)=f n(x) 答案 ①③④
3.函数f(x)=ax-b的图象如图所示,其中a、b为常数,则下列结论不正确的有 (填序号).
①a>1,b<0 ②a>1,b>0 ③0<a<1,b>0 ④0<a<1,b<0 答案 ①②③
4.关于函数f(x)=2x-2-x(x∈R),有下列三个结论: ①f(x)的值域为R;
②f(x)是R上的增函数;
③对任意x∈R,有f(-x)+f(x)=0成立.
指数与指数函数练习试题精选答案
指数与指数函数
(一)指数
3
1、化简[3( 5)2]4的结果为 ( B )
A.5 B.5 C.- D.-5
2、将 22化为分数指数幂的形式为( A )
1115
A. 22 B. 23 C. 2 2 D. 26
3、化简ab2 a3b2
11(a, b为正数)的结果是( C )
b (a6b2)4
A.b
a B.ab C.a
b D.a2b
(二)指数函数
一、指数函数的定义问题
1 若f(52x 1) x 2,则f(125) 。0
2 已知指数函数图像经过点p( 1,3),则f(3) 1
27
二、指数函数的图像问题
1、若函数y ax (b 1)(a 0,a 1)的图像经过第一、三、四象限,则一定有( A )
A.a 1且b 0 B.0 a 1且b 0
C.0 a 1且b 0 D.a 1且b 1
2、方程2|x|+x=2的实根的个数为___2____
3、直线y 3a与函数y ax (a 0且a 1)的图像有两个公共点,则a的取值范围是________ (0,1
3)
4 若 1 x 0,则下列不等式中成立的是( B )
xxxx
A.5 x
《指数函数图像及其性质》教学设计
《指数函数的图像与性质》教学设计
一、教学目标
1.知识与技能
掌握指数函数的图像、性质及其简单应用. 2.过程与方法
通过学生自主探究,让学生总结指数函数的图像与性质. 3.情感、态度、价值观
通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问、善于探索的思维品质.
二、教学重难点
教学重点:指数函数的图像与性质
教学难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质.
三、教学方法:自主探究式 四、教学手段:多媒体教学 五、教学过程:
(一)创设情境 1、复习:
(1)指数函数的定义; (2)指数函数解析式的特征。
2、导入:一般来说,函数的图像与性质紧密联系,图像可反映函数的性质,所以我们今天学习指数函数的图像与性质。 (二)自主探究
?1?1.画一画:用列表、描点、连线的作图步骤,画出指数函数y?2x、y???的图像
?2? -2 -1 xx0 1 2 ?1?2.说一说:通过图像,分析y?2x、y???的性质;
?2?函数 定义域 值域 单调性 特殊点 y的分布情况 当x?0时, 当x?0时, 当x?0时,
高考数学 1.7 指数与指数函数练习
【师说 高中全程复习构想】(新课标) 高考数学 1.7 指数与指数
函数练习
一、选择题
1.(2014·聊城统考)若lga+lgb=0(其中a≠1,b≠1),则函数f(x)=ax与g(x)=bx的图象( )
A.关于直线y=x对称 B.关于x轴对称 C.关于y轴对称 D.关于原点对称
解析:由lga+lgb=0可知lgab=0,即ab=1,所以f(x)=ax,g(x)=a-x.若点(x,y)在f(x)=ax的图象上,则点(-x,y)在函数g(x)=a-x的图象上,即两函数图象关于y轴对称. 答案:C 2.(2014·江西联考)已知函数f1(x)=ax,f2(x)=xa,f3(x)=logax(其中a>0,且a≠1),在同一坐标系中画出其中的两个函数在第一象限内的图象,正确的是( )
A B C
D
解析:不论a>1还是0<a<1,三个函数的单调性应该是一致的,而在A、C、D中的两个函数的单调性显然不一致. 答案:B
1?1??1?
3.(2014·中山一模)设<??b<??a<1,那么( )
5?5??5?A.aa<bb<ba B.aa<ba<ab C.ab<ba<aa D.ab<aa<ba
1?1??1?解析:∵<
指数与指数函数练习试题精选答案
指数与指数函数
(一)指数
3
1、化简[3( 5)2]4的结果为 ( B )
A.5 B.5 C.- D.-5
2、将 22化为分数指数幂的形式为( A )
1115
A. 22 B. 23 C. 2 2 D. 26
3、化简ab2 a3b2
11(a, b为正数)的结果是( C )
b (a6b2)4
A.b
a B.ab C.a
b D.a2b
(二)指数函数
一、指数函数的定义问题
1 若f(52x 1) x 2,则f(125) 。0
2 已知指数函数图像经过点p( 1,3),则f(3) 1
27
二、指数函数的图像问题
1、若函数y ax (b 1)(a 0,a 1)的图像经过第一、三、四象限,则一定有( A )
A.a 1且b 0 B.0 a 1且b 0
C.0 a 1且b 0 D.a 1且b 1
2、方程2|x|+x=2的实根的个数为___2____
3、直线y 3a与函数y ax (a 0且a 1)的图像有两个公共点,则a的取值范围是________ (0,1
3)
4 若 1 x 0,则下列不等式中成立的是( B )
xxxx
A.5 x
指数与指数幂的运算教学设计
教学设计
课题名称:指数与指数幂的运算
姓名:曾小林 学科年级:必修一 教材版本:人教A版 新授课
教学方法:讲授法与探究法 教学媒体选择:多媒体教学 学习者分析:
1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础 2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入。 学习任务分析:
1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值
2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化。
3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算。 教学目标阐明:
1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化。
2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力。 3.情感态