高中数学必修和选择性必修区别
“高中数学必修和选择性必修区别”相关的资料有哪些?“高中数学必修和选择性必修区别”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学必修和选择性必修区别”相关范文大全或资料大全,欢迎大家分享。
高中数学必修1电子教案
第二章 基本初等函数(Ⅰ) 《§2.1.1 指数》教学设计
一、新课程标准要求;1. 了解指数函数模型的实际背景.
2. 理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.
3.1—3课时
二、学习者分析与教学环境分析
1、学习者分析
2、教学环境分析
三、教学目标
1、知识与技能目标(1)理解分数指数幂和根式的概念;
(2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力.
2、过程与方法目标;通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂
的性质.
3、情感、态度与价值观目标;(1)培养学生观察分析,抽象的能力,渗透“转化”的数学
思想;
(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美.
4、法制教育目标
四、教学重点难点
重点:(1)分数指数幂和根式概念的理解;
(2)掌握并运用分数指数幂的运算性质;
难点:分数指数幂及根式概念的理解
五、教学方式;1.建立概念框架、检查课前预习情况 2.进入
苏教版高中数学必修4试卷
高中数学学习材料
金戈铁骑整理制作
数学试卷(必修4)
(考试时间:120分钟 总分:160分)
一、填空题(本大题共14小题,每小题5分,共计70分).
1、函数y?sin(2x??3)的单调增区间为 2、已知函数y?cos(??x??)的最小正周期为1,则正数?的值为 3、已知向量a?(2,4),b?(1,1),若向量b?(a??b),则实数?的值是 。 4、若tan??2,tan(???)?3,则tan(??2?)的值为 ; 5、若cos(2???)?5?且??(?,0),则sin(???)?_________ 326、已知向量a?(1,1),b?(2,n),若|a?b|?a?b,则n=_____________. 7、已知函数f(x)?2sin?x(??0)在区间[?_______.
8、在△ABC中,若sinA?cosA????,]上的最大值是2,则?的最小值等于
347,则tanA的值为 131?cos2??9、若角?的终边落在直线y=-x上,则的值等于________
人教版高中数学(必修五)教案
1
1.1.1 正弦定理
●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点
正弦定理的探索和证明及其基本应用。 ●教学难点
已知两边和其中一边的对角解三角形时判断解的个数。
教学过程:
一、复习准备:
1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?
2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理 二、讲授新课:
1. 教学正弦定理的推导:
①特殊情况:直角三角形中的正弦定理: sin A
高中数学必修3综合练习
必修3综合练习
1、一个容量为10的样本数据,分组后,组距与频数如下:(1,2],1;(2,3],1;(3,4),2;(4,5),3;(5,6),1;(6,7),2.则样本在区间(1,5)上的频率是( )
A.0.70 B.0.25 C.0.50 D.0.20
2、某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查。现将800名学生从1到800进行编号,求得间隔数k=
800
=16,即每1650
人抽取一个人。在1~16中随机抽取一个数,如果抽到的是7,则从33 ~ 48这16个数中应取的数是( )
A.40. B.39. C.38. D.37.
3、下列说法正确的是 ( ) (A) 直方图的高表示取某数的频数
(B) 直方图的高表示该组个体在样本中出现的频率
(C) 直方图的高表示该组个体在样本中出现的频率与组距的比 4、在频率分布直方图中,各个小长方形的面积表示 ( ) (A) 落在相应各组的数据的频数 (B) 相应各组的频率 (C) 该样本所分成的
高中数学必修5教案整理
教案
1. 教学正弦定理的推导:
①特殊情况:直角三角形中的正弦定理: sinA=c=
ab sinB= sinC=1 即ccabc. ??sinAsinBsinC② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)
当?ABC是锐角三角形时,设边AB上的高是CD,根据三角函数的定义,有
CD?asinB?bsinA,则
acab. 同理,(思考如何作高?),从而??sinAsinCsinAsinBabc. ??sinAsinBsinC③*其它证法:证明一:(等积法)在任意斜△ABC
当中
CS
△
111absinC?acsinB?bcsinA. 2221abc 两边同除以abc即得:==.
2sinAsinBsinCABC=
abOBD证明二:(外接圆法)如图所示,∠A=∠D,∴同理
aa??CD?2R, sinAsinDAc??????????????????ABACACCB证明三:(向量法)过A作单位向量j垂直于,由+=边同乘以单位向量j
得…..
④ 正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值. 2. 教学例题:
① 出示例1:在?AB
高中数学必修二与四
高中数学必修二与四的知识点总结 全面清晰
数学 必修2
1. 立体几何初步
(约18课时)
(1)空间几何体
①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。
③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。
④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
(2)点、线、面之间的位置关系
①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
◆公理2:过不在一条直线上的三点,有且只有一个平面。
◆公理3:如果两个不重合的平面有一个
高中数学必修2训练案
第一章 空间几何体 §1.1 空间几何体的结构 第1课时 多面体的结构特征
一、基础过关
1.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( ) A.20 B.15 C.12 D.10 2.棱台不具备的特点是( ) A.两底面相似 C.侧棱都相等 形成的几何体是( ) A.棱柱
C.棱柱与棱锥的组合体 A.1∶2 C.2∶1
B.棱台 D.不能确定 B.1∶4 D.4∶1 B.侧面都是梯形 D.侧棱延长后都交于一点
3.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水
4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )
5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________.(填序号)
7.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.
二、能力提升
8.下图中不可能围成正方
高中数学必修五综合练习
必修五练习
1.在△ABC中,若,则与的大小关系为 ( ) A. B. C. ≥ D. 、的大小关系不能确定 2.在△ABC中,若a=2bsinA,则B为 ( ) A.
B.
C.
或
D.
或
3.在△ABC 中, ,则A等于 ( ) A.60° B.45° C.120° D.30°
4.在△ABC中,bcosA=acosB ,则三角形的形状为 ( ) A.直角三角形 B.锐角三角形 C.等腰三角形 D.等边三角形 5.△ABC的三个内角A、B、C所对的边分别为a,b,c,asinAsinB+bcos2A= A.
B.
C.
D.
,则
( )
6.在△ABC中,∠A,∠B的对边分别为a,b,且∠A=60°,,那么满足条件的△ABC
高中数学课课练必修
1、1、1 算法的概念
(一)算法的概念
算法 (algorithm)指的是用阿拉伯数字进行算术运算的过程。在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步之内完成。描述算法可以有不同的方式,例如,可以用自然语言和数学语言加以叙述;也可以用算法语言给出精确的说明;或者用框图直观地显示算法的全貌。
① ,1?x?2y??(二)例题讲解1、写出解二元一次方程组?
②, ?2x?y?1的一个算法。
解:算法:第一步:②-①×2,得
5y=3,第二步:解③得y= 第三步:将y=代入
5533③
①,得x=。 .
51思考:试写出解一般的二元一次方程组的一个算法。
1
2、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
解:算法:第一步:判断n是否等于2。若n=2,则n是质数;若n>2,则执行第二步。第二步:依次从2到(n-1)检验是不是n的因数,即整除n的数。若有这样的数,则n不是质数;若没有这样的数,则n是质数。
(三)算法的特点
(1)有穷性:即一个算法的步骤序列是有限的;(2)确定性:即
高中数学必修5高中数学必修5《3.1不等关系与不等式(一)》教案
广东省一级学校-陆丰市林启恩纪念中学亲情奉献,高中数学资料
第一课时 3.1 不等关系与不等式(一)
一、教学目标
1.使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)
产生的实际背景的前提下,能列出不等式与不等式组.
2. 学习如何利用不等式表示不等关系,利用不等式的有关基本性质研究不等关系;
3.通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,
通过学生对问题的探究思考,广泛参与,改变学生的学习方式,提高学习质量。
二、教学重、难点
重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理
解不等式(组)对于刻画不等关系的意义和价值。
难点:正确理解现实生活中存在的不等关系. 用不等式(组)正确表示出不等关系。 三、教学过程
(一)[创设问题情境]
问题1:设点A与平面 的距离为d,B为平面 上的任意一点,则d≤AB。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。根据市场调查,若单价每提高0.1
元,销售量就可能相应减少2000本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元? 分析:若杂志的定价为x元,则销售的总