中考数学锐角三角函数应用题专题

“中考数学锐角三角函数应用题专题”相关的资料有哪些?“中考数学锐角三角函数应用题专题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“中考数学锐角三角函数应用题专题”相关范文大全或资料大全,欢迎大家分享。

A2锐角三角函数应用题专题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

锐角三角函数

如图,在 三角形ABC中,∠C=90°.设∠A的对边为a,∠B的对边为b,∠C的对边为c.

∠B的正切 = ∠B又叫做坡角,

∠B的 SinB =

∠B的

一、特殊角三角函数.

已知∠C=90°,∠A=30°,AB=10,求AC、BC. 解:∵∠C=90°,∠A=30°

∴BC=AB·sinA ·

A

C

已知∠C=90°,∠B=60°,AB=10,求AC、BC. 解:∵∠C=90°,∠B=60° ∴AC=AB· ·

A

=

AC = AB· =10·

=

BC = ·B =10·

=

已知∠C=90°,∠A=30°,BC=10,求AC、AB. 解:∵∠C=90°,∠A=30°

∴tanA =

A

=

已知∠C=90°,∠B=60°,BC=10,求AC、AB. 解:∵∠C=90°,∠B=60°

∴tanB

锐角三角函数

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

龙文学校 教师一对一

www.lwgxh.com龙文学校个性化辅导资料 启迪思维,点拨方法,开发潜能,直线提分!

第28章:锐角三角函数

一、基础知识

1.定义:如图在△ABC中,∠C为直角,

我们把锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA;sinA= sinA?a c把锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA;cosA?b ca b把锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA 。tanA?把锐角∠A的邻边与对边的比叫做∠A的余切,记作cosA。cosA?2、三角函数值

(1)特殊角的三角函数值 角度 0° 三角函数 sinA 0 30° 45° 60° 90° 1 b a1 23 23 32 23 2cosA 1 12 221 0 tanA 0 3 不存在 (2)锐角三角函数值的性质。 锐角三角函数的大小比较:

在0??A?90?时,随着A的增大,正弦值越来越大,而余弦值越来越小. 即:sinA是增函数,cosA减函数。

1锐角三角函数值都是正数。 ○

2当角度在090间变化时:正弦、正切值随着角度的增大而增大;余弦、余切随着角度的增大而减小。 ○

3、 同角、互余角的

锐角三角函数经典中考真题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

锐角三角函数经典中考真题

一、选择题

1. (2011甘肃)如图,A、B、C三点在正方形网格线的交点处,若将△ACB绕着点A逆时针旋转得到△AC’B’,则tanB’的值为( ) A.

1

2

B.

1 3

C.

1 4

D

4

2. (2011江苏)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于( ) A.

3434

B. C. D. 4355

A

E

B

3. (2011四川内江)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=4,CE=A

.D

C

4

,则△ABC的面积为( ) 3

B.15

C

D

4. (2011山东)在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=下列关系式中不成立的是( ) ...

(A)tanA·cotA=1 (B)sinA=tanA·cosA (C)cosA=cotA·sinA (D)tan2A+cot2A=1

5. (2011浙江温州)如图,在△ABC中,∠C=90

锐角三角函数基础题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

锐角三角函数基础题

一、选择题(共12小题) 1.(2014 兰州)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )

2.(2014 随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为( )

4.(2014 广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=( )

5.(2014

湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是( )

7.(2014 巴中)在Rt△ABC中,∠C=90°,sinA=

9.(2014 义乌市)如图,点A(t,3)在第一象限,

OA与x轴所夹的锐角为α,tanα=,则t的值是( )

2

,则tanB的值为( )

10.(2014 凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1

,坝高BC=10m,则坡面AB的长度是(

二、填空题(共12小题)(除非特别说明,请填准确值) 13.(2014 新疆)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32

(完整版)锐角三角函数仰角俯角应用题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

1. (2008 安徽省芜湖市) 在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC ,小丽同学在点A 处,测得条幅顶端D 的仰角为30°,再向条幅方向前进10米后, 又在点B 处测得条幅顶端D 的仰角为45°,已知测点A 、B 和C 离地面高度都为1.44米,求条幅顶端D 点距离地面的高度.(计算结果精确到0.1米, 参考数据

:2 1.414,3 1.732≈≈.)

2. (2008 湖北省荆门市) 如图,山脚下有一棵树AB ,小华从点B 沿山坡向上走50米到达点D ,用 高为1.5米的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高.(精确到0.1米)

(已知sin10°≈0.17, cos10°≈0.98, tan10°

≈0.18, sin15°≈0.26, cos15°≈0.97, tan15°≈0.27.)

3. (2008 四川省成都市) 如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C D ,间的距离.从山顶A 处测得湖中小岛C 的俯角为60o ,测得湖中小岛D 的俯角为45o .已知小山AB 的高为180米,求小岛C D

锐角三角函数的实际应用

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

学生姓名 授课日期

广州卓越一对一初中数学教研部

编著

课题 教学目标 教学重点 教学难点

锐角三角函数的实际应用1、 进一步掌握锐角三角函数的定义; 2、 能够灵活运用三角函数解决简单的实际问题 能够灵活运用三角函数解决简单的实际问题 能够灵活运用三角函数解决简单的实际问题

第一部分:知识点回顾1.边与边关系:a2+b2=c2 2.角与角关系:∠A+∠B=90° a b a b 3.边与角关系,sinA= ,cosA= ,tanA= ,cota= c c b a 4.仰角、俯角的定义:如右图,从下往上看,视线与水平线的夹角叫做仰 角,从上往下看,视线与水平线的夹角 叫做俯角。右图中的∠1 就是仰角,∠2 就是俯角。 坡角、坡度的定义:坡面的铅垂高度与水平宽度的比叫做坡度 (或坡比), AC 读作 i,即 i= ,坡度通常用 1:m 的形式(注意:坡度一定要写出 1:几的形 BC 式),例如上图的 1:2 的形式。 坡面与水平面的夹角叫做坡角。 从三角函数的概念可以知道, 坡度与坡角的关系是 i=tanB。显然,坡度越大,坡角越大,坡面就越陡。

第二部分:自我评测知识点 特殊三角函数的值 坡度计算 三角函数的实际应用 掌握情况 非常好 一般 有

锐角三角函数测试

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

锐角三角函数 单元测试

1.cos60 的值等于( )

A.

21

B.

22

C.

2

D.1

2.在Rt△ABC 中, ∠C=90 ,AB=4,AC=1,则tanA的值是( )

1

A

B. C

D.4

4

3.已知 为锐角,且sin( 10 )

3,则等于( )

2

A.50 B.60 C.70 D.80

4.已知直角三角形ABC中,斜边AB的长为m, B 40,则直角边BC的长是( )

A.msin40 B.mcos40

C.mtan40

D.

m

tan40

5.在Rt△ABC中, C 90

,BC

,AC A ( )

A.90 B.60 C.45 D.30

6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)位于她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是( )

A.250m. B. 250.3 m. C.500.33 m. D.3 m.

7.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE的值是( )

福州中考数学压轴题专题复习—锐角三角函数的综合

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.

【答案】553

【解析】

【分析】

如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.

【详解】

解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.

∵AM⊥CD,

∴∠QMP=∠MPO=∠OQM=90°,

∴四边形OQMP是矩形,

∴QM=OP,

∵OC=OD=10,∠COD=60°,

∴△COD是等边三角形,

∵OP⊥CD,

∠COD=30°,

∴∠COP=1

2

∴QM=OP=OC?cos30°=3

∵∠AOC=∠QOP=90°,

∴∠AOQ=∠COP=30°,

∴AQ=1

OA=5(分米),

2

∴AM=AQ+M

锐角三角函数测试

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

锐角三角函数 单元测试

1.cos60 的值等于( )

A.

21

B.

22

C.

2

D.1

2.在Rt△ABC 中, ∠C=90 ,AB=4,AC=1,则tanA的值是( )

1

A

B. C

D.4

4

3.已知 为锐角,且sin( 10 )

3,则等于( )

2

A.50 B.60 C.70 D.80

4.已知直角三角形ABC中,斜边AB的长为m, B 40,则直角边BC的长是( )

A.msin40 B.mcos40

C.mtan40

D.

m

tan40

5.在Rt△ABC中, C 90

,BC

,AC A ( )

A.90 B.60 C.45 D.30

6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)位于她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是( )

A.250m. B. 250.3 m. C.500.33 m. D.3 m.

7.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE的值是( )

锐角三角函数(培优)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

知识要点

1、 锐角三角函数定义

斜边的对边αα∠=sin 斜边的邻边αα∠=cos

的邻边的对边ααα∠∠=tan 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300、450、600、的记忆规律:

3、 角度变化与锐角三角函数的关系

当锐角α在00∽900之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。

4、 同角三角函数之间有哪些关系式

平方关系:sin 2A +cos 2A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tanB =1;

5、 互为余角的三角函数有哪些关系式

Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900-A )=ctan A ;

一、选择题

1.在Rt △ABC 中,∠C =900,∠A =∠B ,则sinA 的值是( ).A .21 B .22 C .2

3 D .1 2.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A .21 B .3

3 C .1 D .3 3.在Rt △ABC 中,如果各边的长度