集合论与图论和离散数学

“集合论与图论和离散数学”相关的资料有哪些?“集合论与图论和离散数学”相关的范文有哪些?怎么写?下面是小编为您精心整理的“集合论与图论和离散数学”相关范文大全或资料大全,欢迎大家分享。

集合论与图论 离散数学 模拟题1

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

一.列式题。用谓词表示法表示如下集合: 1. 所有偶数组成的集合A

A={x| x∈Z ∧ x mod 2 =0}. 2. 所有奇数组成的集合B

B={x| x∈Z ∧ x mod 2 =1}. 3. 10的整倍数组成的集合A

A={x| x∈Z ∧x mod 10 =0}. 4. 5的整倍数组成的集合B

A={x| x∈Z ∧x mod 5 =0}.

5. 方程x2-1=0的所有实数解的集合B。

B={x|x∈R ∧x2-1=0}

6. 小于5的非负整数组成的集合A:A={x | x ∈ N ∧ x < 5 }.

二.判断题 1.( F )包含三个元素的集合A表示成:A=(1,2,3)。 2.( F )集合A ={1,2,3}与集合B ={2,3,1}是两个不同的集合。 3.( T )R=Φ是一个二元关系。 4.( T )设A= {1, 2, 3},R= {<1, 1>, <2, 2>, <3, 3>, <1, 2>},则R是A上自反的关系。 5.( T )设A= {1, 2, 3},R= {<1, 1>, <1, 2>, <2, 1>},则R是A上对称的关系。 6.( T )设A= {1, 2, 3},R= {<1, 2>,<1, 3>},则R是A上反对称的关系。 7.( T )设A= {1, 2, 3},R= {<1, 1>,<2, 2>},则R是A上

离散数学之集合论

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

离散数学四大核心:代数系统、集合论、数理逻辑、图论。

第二篇 集合与关系

集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。

随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。

现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科

离散数学之集合论

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

第二篇 集合与关系

集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。

随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。

现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学

离散数学之集合论

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

离散数学四大核心:代数系统、集合论、数理逻辑、图论。

第二篇 集合与关系

集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。

随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。

现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科

离散数学之集合论

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

第二篇 集合与关系

集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。

随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。

现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学

离散数学集合论练习题

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

集合论练习题

一、选择题

1.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( ).

A.{2}?B B.{2, {2}, 3, 4}?B C.{2}?B D.{2, {2}}?B 2.若集合A={a,b,{ 1,2 }},B={ 1,2},则( ). A.B ? A,且B?A B.B? A,但B?A C.B ? A,但B?A D.B? A,且B?A 3.设集合A = {1, a },则P(A) = ( ).

A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 4.已知A?B={1,2,3}, A?C={2,3,4},若2? B,则( )

A. 1?C B.2?C C.3?C D.4?C

集合论与图论课件3

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

?顶点连通度和边连通度第三章 连通度、匹配? ?门格尔定理??匹配、霍尔定理本章的特点:(1)理论深;(2)本科基本用不上(计算机体系结构上用到一点),只有

研究生才能用上;(3)只介绍这个领域最基本的概念和一些有用的结果。

一个图是否是连通的,这是图的一个重要性质。

内容:本章首先引入图的顶点连通度和边连通度,由此可以比较两个图中哪个“更加连通”;

接着讨论了它们的一些简单性质; 然后讨论偶图的匹配问题。

?动机和目的?顶点连通度(G)、边连通度(G)???第一节 顶点连通度和边连通度?

?(G)、(G)、(G)关系?????n-顶点连通、n-边连通

1.1 动机和目的

一个图是否是连通的,是图的一个重要性质。于是,我们就想来刻画两个图“连通程

度”的大小,但是刻画两个图“连通程度”的大小方法很多,我们只介绍两个常用的方法:顶点连通度和边连通度

例:树的每个度大于1的顶点都是割点。一个具有割点的连通图,当去掉这个割点时,就产生了一个不连通图。对于一个没有割点的连通图,必须去掉多于一个顶点才有可能得到一个不连通图。于是,具有割点的连通图较之没有割点的连通图的“连通程度”要低。

类似地,树的每条边的都是桥。有桥的连通图,当去掉桥时,就产生

集合论、图论重要习题100

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

例:

1、设A,B是两个集合,B≠¢,试证:若A×B=B×B, 则A=B。

2、设A,B,C,D是任意四个集合,证明: (A∩B)×(C∩D)=(A×C)∩(B×D)

3、某班30名学生中学英语有7人,学日语有5人,这两科都选有3人,问两科都不选的有多少人?

(|AC∩BC|+|A∪B|=30, |AC∩BC|=21人)

4、令N={1,2,3,…},S:N→N,则

(1)?n?N,S(n)=n+1,S称为自然数集N上的后继函数。

(2)S(1)=1,?n?N,S(n)=n-1,n≥2,S称为自然数集N 上的前仆函数。

5、设f:N×N ?N,f((x,y))=xy。则 (1)说明f是否是单射、满射或双射? (2)求f(N×{1}),f-1({0})。

(1,4)≠(2,2),f((1,4))=f((2,2))=4;

?y?N,f((1,y))=1·y=y,任一元都有原象; [f不是单射,f是满射]

f(N×{1})={n·1|n ?N}=N;

f-1({0})={(x,y)|xy=0}={N×{0}}?{{0}×N}。

6、设R、I、N是实数、整数、自然数集合,下面定义映射f1,f2,f

集合论、图论重要习题100

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

例:

1、设A,B是两个集合,B≠¢,试证:若A×B=B×B, 则A=B。

2、设A,B,C,D是任意四个集合,证明: (A∩B)×(C∩D)=(A×C)∩(B×D)

3、某班30名学生中学英语有7人,学日语有5人,这两科都选有3人,问两科都不选的有多少人?

(|AC∩BC|+|A∪B|=30, |AC∩BC|=21人)

4、令N={1,2,3,…},S:N→N,则

(1)?n?N,S(n)=n+1,S称为自然数集N上的后继函数。

(2)S(1)=1,?n?N,S(n)=n-1,n≥2,S称为自然数集N 上的前仆函数。

5、设f:N×N ?N,f((x,y))=xy。则 (1)说明f是否是单射、满射或双射? (2)求f(N×{1}),f-1({0})。

(1,4)≠(2,2),f((1,4))=f((2,2))=4;

?y?N,f((1,y))=1·y=y,任一元都有原象; [f不是单射,f是满射]

f(N×{1})={n·1|n ?N}=N;

f-1({0})={(x,y)|xy=0}={N×{0}}?{{0}×N}。

6、设R、I、N是实数、整数、自然数集合,下面定义映射f1,f2,f

离散数学 图论

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

第六章 图论基础

图是建立和处理离散数学模型的一种重要工具。图论是一门应用性很强的学科。许多学科,诸如运筹学、网络理论、控制论、化学、生物学、物理学、社会科学、计算机科学等,凡是研究事物之间关系的实际问题或理论问题,都可以建立图论模型来解决。随着计算机科学的发展,图论的应用也越来越广泛,同时图论也得到了充分的发展。这里将主要介绍与计算机科学关系密切的图论的内容。

6.1 图的基本概念

我们已知集合的笛卡尔积的概念,为了定义无向图,还需要给出集合的无序积的概念。 任意两个元素a,b构成的无序对(Unordered pair)记作(a,b),这里总有(a,b)?(b,a)。 设A,B为两个集合,无序对的集合{(a,b)a?A?b?B}称为集合A与B的无序积(Unordered Product),记作A&B。无序积与有序积的不同在于A&B?B&A。

例如,设A??a,b?,B??0,1,2?,则A&B?{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)} ?B&A,A&A?{(a,a),(a,b),(b,b)}。 为了引出图的定义,我们先介绍如下的例子。

B start s=0,i =1 i=1 S i=11? Y N s