初等矩阵的幂有什么性质
“初等矩阵的幂有什么性质”相关的资料有哪些?“初等矩阵的幂有什么性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初等矩阵的幂有什么性质”相关范文大全或资料大全,欢迎大家分享。
幂零矩阵性质应用
------------幂零矩阵的性质及应用
目录
幂零矩阵的概念 幂零矩阵的性质 特殊的幂零矩阵 幂零矩阵的应用
------------幂零矩阵的性质及应用定义一
定义二
------------幂零矩阵的性质及应用
------------幂零矩阵的性质及应用
特殊的幂零矩阵 1、A为实对称矩阵且 A2 0 阵都是相似. 3、所有 n阶n-1次幂零矩阵相似(n-1为幂 零指数). ,则有 A=0.
2、所有n 阶幂零指数等于其阶数的幂零矩
------------幂零矩阵的性质及应用
利用幂零矩阵的性质来简化矩阵求逆的计算
1. 可表为幂零矩阵与单位矩阵和的矩阵的逆. 若矩阵A可表示为幂零 矩阵与单位矩阵的和,则可借用二项式展 开定理,将矩阵A的逆转 化为单位矩阵与幂零矩阵的乘幂. 2. 主对角线上元素完全相同的三角矩阵的逆. 对于主对角线元素完 全相同的三角矩阵可表示为数量矩阵和幂零矩阵的和 3. 可表示为若当矩阵的幂的和的矩阵的逆
------------幂零矩阵的性质及应用一个例子
------------幂零矩阵的性质及应用幂零矩阵其他重要的应用1、对于n维线性空间v,必存在 的一组基使得由v的幂零线性变换生成的 幂零代数N中任意元素在该基
考研数学线性代数强化资料-逆矩阵与初等矩阵
点这里,看更多数学资料
2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。中公考研辅导老师为考生准备了【线性代数-逆矩阵与初等矩阵知识点讲解和习题】,希望可以助考生一臂之力。同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。
模块四逆矩阵与初等矩阵
Ⅰ教学规划
【教学目标】
1、全面复习逆矩阵的基本概念和常用性质、公式
2、系统掌握矩阵可逆性的讨论及逆矩阵的计算方法
3、系统掌握伴随矩阵的概念、性质和常用公式
4、掌握初等矩阵与初等变换的基本关系
5、理解初等矩阵与逆矩阵的本质联系
【主要内容】
1、逆矩阵的概念和性质
2、伴随矩阵的概念、性质和常用公式
3、矩阵可逆性的讨论
4、逆矩阵的计算
中公考研,让考研变得简单!查看更多考研数学辅导资料
点这里,看更多数学资料
中公考研,让考研变得简单! 查看更多考研数学辅导资料 5、矩阵方程的求解
6、初等变换与初等矩阵
【重难点】
1、伴随矩阵相关的计算与证明
2、矩阵可逆性的讨论
3、矩阵方程的求解
Ⅱ 知识点回顾
一.逆矩阵
1.定义
对于一个n 阶方阵A ,如果存在一个n 阶方阵B ,使得AB =
幂等矩阵的性质及应用
JIU JIANG UNIVERSITY
毕 业 论 文 (设 计)
题 目幂等矩阵的性质及应用 英文题目Properties and Application
of Idempotent Matrix
院 系 理学院 专 业 数学与应用数学 姓 名 邱望华 年 级 A0411 指导教师 王侃民
二零零八年 五月
摘 要
幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。
[关键词] 幂等矩阵,性质,幂等性,线性组合
I
Abstract
The idempotent matrix is widely applied in mathematics as well
幂零矩阵性质及应用
幂零矩阵性质及应用
数本041 严益水 学号:410401109
摘要:
幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。它具有一些很好的性质。本文从矩阵的不同角度讨论了幂零矩阵的相关性质。幂零矩阵与若当形矩阵结合可得一个很好性质,在解相关矩阵问题有很好作用,由此我们举例说明,从例子中发现了问题并对此问题进行思考得出了一些结论,对幂零矩阵的研究很有意义。在一般矩阵中,求矩阵的逆比较麻烦,本文最后利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法。
关键词:幂零矩阵 若当块 特征值 幂零指数 一、 预备知识
(下面的引理和概念来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、 《高等代数选讲》 陈国利 中国矿业大学出版社及《高等代数习题集》(上册) 杨子胥 山东科学技术出版社)
(一) 一些概念
1、令A为n阶方阵,若存在正整数k,使Ak?0,A称为幂零矩阵。 2、若A为幂零矩阵,满足Ak?0的最小正整数称为A的幂零指数。
?a11?a1n??a11?an1?????3、设A??????,称A???????为A
幂零矩阵性质及应用
幂零矩阵性质及应用
数本041 严益水 学号:410401109
摘要:
幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。它具有一些很好的性质。本文从矩阵的不同角度讨论了幂零矩阵的相关性质。幂零矩阵与若当形矩阵结合可得一个很好性质,在解相关矩阵问题有很好作用,由此我们举例说明,从例子中发现了问题并对此问题进行思考得出了一些结论,对幂零矩阵的研究很有意义。在一般矩阵中,求矩阵的逆比较麻烦,本文最后利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法。
关键词:幂零矩阵 若当块 特征值 幂零指数 一、 预备知识
(下面的引理和概念来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、 《高等代数选讲》 陈国利 中国矿业大学出版社及《高等代数习题集》(上册) 杨子胥 山东科学技术出版社)
(一) 一些概念
1、令A为n阶方阵,若存在正整数k,使Ak?0,A称为幂零矩阵。 2、若A为幂零矩阵,满足Ak?0的最小正整数称为A的幂零指数。
?a11?a1n??a11?an1?????3、设A??????,称A???????为A
毕业论文 幂零矩阵的性质与应用 曹彦辉
齐齐哈尔大学毕业设计(论文)
摘 要
在高等数学研究中,矩阵不仅是研究问题的一种重要工具而且在实际生活中具有广泛的应用,幂零矩阵是矩阵中满足Ak?0的一类比较特殊的矩阵,所以幂零矩阵在矩阵理论中占有非常重要的地位,同时在实际应用方面也具有特殊的意义。幂零矩阵具有很多很好的性质,本文归纳总结18条性质,共用到定理或引理14条,系统说明这些性质并给出相应的证明;如在求特殊矩阵的逆以及在若尔当标准型的计数方面等,本文深入挖掘这些性质,并且用不同的方法去分析、论证这些性质。同时本文幂零矩阵自身具有的一些特殊性质给出了论证,并举例加以说明。
本文同时探讨了2个矩阵是幂零矩阵的充分必要条件,并说明其在求矩阵的逆矩阵方面的方便化与简单化,体现了幂零矩阵的实用性以及研究的必要行;同时探讨了数域K上n阶矩阵与幂零矩阵简单的联系,比如可以利用n阶矩阵与幂零矩阵的运算解决需许多实际问题,即每一个奇异方阵均可表示成一个幂零方阵加上两个幂零方阵的乘积. 利用幂零矩阵的性质,可以把一个n阶方阵变为两个可逆矩阵与一个对角矩阵之和,进而方便研究矩阵的其他性质,并通过具体例子说明其在实际应运中的作用。
关键词:幂零矩阵;线性变换;逆矩阵;若尔当标准型;特征值
毕业论文 幂零矩阵的性质与应用 曹彦辉
齐齐哈尔大学毕业设计(论文)
摘 要
在高等数学研究中,矩阵不仅是研究问题的一种重要工具而且在实际生活中具有广泛的应用,幂零矩阵是矩阵中满足Ak?0的一类比较特殊的矩阵,所以幂零矩阵在矩阵理论中占有非常重要的地位,同时在实际应用方面也具有特殊的意义。幂零矩阵具有很多很好的性质,本文归纳总结18条性质,共用到定理或引理14条,系统说明这些性质并给出相应的证明;如在求特殊矩阵的逆以及在若尔当标准型的计数方面等,本文深入挖掘这些性质,并且用不同的方法去分析、论证这些性质。同时本文幂零矩阵自身具有的一些特殊性质给出了论证,并举例加以说明。
本文同时探讨了2个矩阵是幂零矩阵的充分必要条件,并说明其在求矩阵的逆矩阵方面的方便化与简单化,体现了幂零矩阵的实用性以及研究的必要行;同时探讨了数域K上n阶矩阵与幂零矩阵简单的联系,比如可以利用n阶矩阵与幂零矩阵的运算解决需许多实际问题,即每一个奇异方阵均可表示成一个幂零方阵加上两个幂零方阵的乘积. 利用幂零矩阵的性质,可以把一个n阶方阵变为两个可逆矩阵与一个对角矩阵之和,进而方便研究矩阵的其他性质,并通过具体例子说明其在实际应运中的作用。
关键词:幂零矩阵;线性变换;逆矩阵;若尔当标准型;特征值
矩阵的初等变换及其应用
石家庄经济学院本科生毕业论文
摘 要
在数学中矩阵最早来源于方程组的系数及常数所构成的方阵,现在矩阵是线性代数最基本也是最重要的概念之一。在线性代数及其许多的问题中都能看到矩阵的身影,它能把抽象的问题用矩阵表示出来,通过对矩阵进行计算得出结果。作为矩阵的基础及核心,矩阵的初等变换及应用是非常重要的,它能够把各种复杂的矩阵转化成我们需要的矩阵形式,从而使计算变得更加的简便。
本文总结了线性变换在线性代数、初等数论、通信、经济、生物遗传等方面的应用。
关键词:矩阵;初等变换;标准型;逆矩阵;标准型;秩;方程组
ABSTRACT
Matrix derived from the first phalanx of the coefficients and constants of the equations in mathematics, now matrix is the most fundamental and important concepts of linear algebra, in linear algebra and many other questions can be seen the figure of the matri
矩阵的初等变换及其应用
矩阵的初等变换及其应用
王丹
矩阵的初等变换及其应用
摘 要
矩阵的初等变换是研究矩阵的一种重要手段,是线性代数中应用的核心。本文简单介绍了与矩阵相关的一些概念和性质,以此为基础,求矩阵的秩、判断矩阵是否可逆后求逆矩阵、求方程组的基础解系、求特征值和特征向量、化二次型为标准形等等,并举例说明矩阵的初等变换在以上的应用中是如何发挥作用的。
关键词:矩阵,初等变换,应用
The elementary transformation of matrix and its applications
Abstract
Elementary transformation matrix is an important means of Matrix is the core linear algebra applications. This article briefly describes some of the concepts and properties associated with the matrix as a basis, the rank of a matrix to determine whether a matrix is reversible after
03 分式乘方法则与幂的运算性质有何关系?
凤凰初中数学配套教学软件_知识拓展
分式乘方法则与幂的运算性质有何关系?
解答 根据乘方的意义和分式乘法法则,可得分式乘方法则:分式乘方是把分子、分母各自乘方.即
an ?b???= bn(n为正整数). ?a?n a
由于 b表示a除以b的商,所以分式乘方的法则实质上就是商的乘方法则,这个法则与整式的乘除中幂的运算法则组成了系统的幂的五种运算性质.即关于正整数m、n有: (1)am·an=am+n,
(2)am÷an=am-n(a≠0,m>n), (3)(am)n=amn,
(4)(ab)n=anbn, an ?b?(5)??= bn(b≠0).
?a?n加强幂的运算性质“双向应用”的练习,有利于熟练掌握幂的运算性质,发展思维,提高灵活解决有关幂的各类问题的能力.
2a3 2 2a3b 3 -bc 4
例1 计算( c)÷()·( a)
-c2 2a3 2 2a3b 3 -bc 4
解:( c)÷()·( a)
-c2 4a6 c6 b4c4 = c2· 8a9b3· a4 bc8 =-7 2a
正向应用幂的运算性质解题时,应注意以下几点.
(1)“分子、分母各自乘方”是针对分子与分母的整体而言,如果分子、